Icesat-2 Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Icesat-2 Brochure National Aeronautics and Space Administration MEASURING THE HEIGHT OF EARTH’S ICE FROM SPACE Ice, Cloud, and land Elevation Satellite-2 mission: icesat-2.gsfc.nasa.gov ICESat-2 Science Objectives The ICESat-2 mission is designed to accomplish four science objectives: 1. Quantify how much melting ice sheets in Greenland and Antarctica contribute to sea level changes. 2. Quantify how ice sheets and glaciers are gaining or losing mass at a regional level, to help researchers understand the mechanisms behind those changes. 3. Estimate the thickness of sea ice and monitor any changes. 4. Measure the height of vegetation in forests and other ecosystems worldwide. Table of Contents ICESat-2 at a Glance ................................................................................................ 4 ICESat-2: Measuring the Height of Ice from Space .................................................. 6 NASA’s View of Our Frozen Earth ........................................................................... 10 Instrument Overview: The Advanced Topographic Laser Altimeter System............ 14 Algorithm and Data Product Development ............................................................. 18 Spacecraft Design and Launch .............................................................................. 20 Ground System and Data Products ........................................................................ 22 Photo credit: Eric Rignot/NASA Photo credit: NASA’s new Earth-observing satellite will measure the height of our planet’s ice in unprecedented detail. Laser ICESat-2’s ATLAS laser instrument pulses 10,000 times a second, each pulse sending 300 trillion Telescope bright green laser photons to the The ATLAS receiver telescope ground. Scientists calculate height collects the handful of photons by using the time it takes individ- from each laser pulse that ual photons sent from the laser to return to the satellite. Every bounce off Earth’s surface and re- second, the instrument records turn to the satellite. data from 60,000 returning photons. Each photon’s flight time is measured with a preci- sion of 800 picoseconds. National Aeronautics and Space Administration Spacecraft The ICESat-2 spacecraft orbits Earth at 15,660 mph at an altitude of 310 miles. Every 91 days, it completes 1,387 unique orbits. The mission collects a terabyte of data daily. Land Ice Glaciers and ice sheets form as snowfall accumulates over centuries and millennia. As more land ice melts into the ocean, global sea level rises. ICESat-2 will measure the annual rise or fall of ice sheets to within a fraction of an inch. Sea Ice Sea ice forms when ocean water freezes, and in the Arctic Ocean forms a brightly Credit: Nathan Kurtz/Operation Credit: Icebridge/NASA reflective cap that helps regulate Earth’s temperature. The ICESat-2 mission will calculate the thickness of sea ice by measuring the freeboard—the difference between the top of sea ice and the ocean surface. Credit: Jeremy Harbeck/Operation Icebridge/NASA Jeremy Credit: ICESat-2 Measuring the Height of Ice from Space Earth’s ice is shrinking. Ice is being lost across the globe, especially in the polar regions. The continental ice sheets of Greenland and Antarctica are shedding ice to the oceans and raising sea level. Arctic sea ice is less than half its 1980s volume. Fundamentally changing the Arctic, this ice loss may also be affecting North American and global weather. NASA is launching the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) to measure changes in Earth’s ice and improve forecasts of the global impacts. With its fast-firing laser, the satellite will collect information enabling scientists to calculate—to within fractions of an inch—how much the vast ice sheets of Antarctica and Greenland rise or fall each year. ICESat-2 will take measurements across the globe and provide an incredibly precise height map of our planet in unprecedented detail. Its focus will be on Earth’s poles, including the Arctic region where temperatures are rising faster than at other latitudes. Credit: NASA Credit: Greenland Ice Height Change (m/yr) Gulf [Above] This image was created using data from the of original ICESat mission. Blue denotes decreases in ice Mexico height per year from 2003-2009 (when ICESat was in operation), while red denotes increases in ice height per year. More recently, between 2002 and 2016, NASA/Operation IceBridge Photo credit: about 280 gigatons of ice melted from Greenland [Above] The calving front of the Kangerlussuaq Glacier, on Greenland’s east coast. When each year, causing annual global sea level rise of 0.03 glacier ice calves and melts into the ocean, it contributes to sea level rise. Scientists inches (0.8 millimeters). Scientists are using height estimate global sea level could rise between 0.66 to 6.6 feet (0.2 to 2.0 meters) higher changes to calculate the mass loss of ice. by 2100, compared to the first decade of this century. Global land-ocean temperature index for Greenland ice mass change since 2002: Greenland ice loss 2002-2018: Antarctic ice mass change since 2002: Antarctic ice loss 2002-2018: 2017 relative to the 1951-1980 average: -286 gigatons/year 4,576 gigatons -127 gigatons/year 2,032 gigatons +0.9°C 6 ICESat-2 is poised to capture changes in the planet’s ice in unprecedented detail, shedding light on rising sea levels and shifting ocean currents. Credit: NASA Credit: Hundreds of billions of tons of land of ice sheets will help researchers narrow reflects the Sun’s heat back into space. ice melt into the oceans annually, that range of possibilities to forecast sea When white ice melts away, leaving dark raising sea levels worldwide. In recent level rise with greater certainty, allowing waters, the ocean soaks up that heat. years, meltwater from the ice sheets on communities to be better prepared. This alters wind and ocean circulation Greenland and Antarctica alone has raised patterns that span the globe, affecting Floating sea ice doesn’t change sea level global sea level by more than a millimeter Earth’s weather and climate. when it melts, just like melting ice cubes a year, and the rate is increasing. Based don’t overflow a glass of water. But sea Shrinking sea ice cover also disrupts on computer simulations and satellite ice loss has a different suite of global traditional ways of life for native Arctic data, global sea level could be anywhere consequences. The bright Arctic ice cap from 0.66 to 6.6 feet (0.2 to 2.0 meters) higher by 2100 than in the first decade of this century. ICESat-2 data documenting the ongoing height change [Right] In this image, created using data from the original ICESat mission, blue denotes decreases in ice height per year from 2003-2009 (when ICESat was in operation), while red denotes increases in ice height per year. While some areas gained ice from 2003-2009, data from 2002 to 2016 show that overall the ice from the continent is melting, sending approximately 125 gigatons of ice into the ocean and raising sea level about 0.01 inches (0.35 mm) per year. Antarctica Ice Height Change (m/yr) Credit: NASA Credit: Arctic sea ice minimum Antarctic ice mass change since 2002: Antarctic ice loss 2002-2018: Arctic sea ice loss since 1980: Sea level rate of change 1993-2018: relative to the 1981-2010 average: -127 gigatons/year 2,032 gigatons ~40% 3.2 millimeters/year -13.2 %/decade 7 [Left] Earth’s 2017 surface temperatures were the second warmest since modern mea- surements began in 1880, with 2016 taking the record. This map shows global tempera- ture anomalies averaged from 2013 through 2017 in degrees Fahrenheit. Red shades show how much warmer a given area was compared to an averaged base period from 1951 to 1980. Warming is concentrated over the Arctic and some land areas (darkest shades of red). Generally, warming is greater over land than over the ocean because water is slower to ab- sorb and release heat. Credit: NASA Credit: communities, and changes habitats for In the blink of an eye—half a second— to travel from the spacecraft to Earth wildlife such as polar bears and whales. ICESat-2’s laser altimeter will fire 5,000 and back—and does so with a precision While scientists routinely measure sea times, sending trillions of photons to better than a billionth of a second. In ice coverage from satellite images, the ground in six beams of green light. the course of three months, ATLAS will they lack region-wide sea ice height The instrument, called the Advanced cover the globe with 1,387 individual measurements that would allow them Topographic Laser Altimeter System orbits, collecting billions of measurements to derive thickness and volume—height (ATLAS), measures height by timing to create a three-dimensional portrait of measurements that ICESat-2 will provide. how long it takes individual photons our planet. [Right] In 2017, Arctic sea ice reached its lowest extent for that year on September 13, according to NASA and the National Snow and Ice Data Center (NSIDC). Since satellites began continually monitoring sea ice in 1978, researchers have observed a steep decline in the average extent of Arctic sea ice for every month of the year. With ICESat-2 data, scientists will be able to track the thickness of the sea ice in addition to the extent. Credit: NASA Credit: Arctic sea ice extent has consistently shrunk below Between 2003 and 2009, Arctic sea ice declined in thickness by more than the 1980–2010 average since 2011. 23.6 inches (60 centimeters). 8 As the satellite orbits, it will also connect the mission science to societal measure the height of the ocean and needs. ICESat-2 measurements of res- land. Researchers investigating vegetation, ervoir heights could help local govern- clouds, and more will be able to use the ments plan for flooding or drought, for satellite’s terabytes of data to study the example.
Recommended publications
  • High-Temporal-Resolution Water Level and Storage Change Data Sets for Lakes on the Tibetan Plateau During 2000–2017 Using Mult
    Earth Syst. Sci. Data, 11, 1603–1627, 2019 https://doi.org/10.5194/essd-11-1603-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions Xingdong Li1, Di Long1, Qi Huang1, Pengfei Han1, Fanyu Zhao1, and Yoshihide Wada2 1State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China 2International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria Correspondence: Di Long ([email protected]) Received: 21 February 2019 – Discussion started: 15 March 2019 Revised: 4 September 2019 – Accepted: 22 September 2019 – Published: 28 October 2019 Abstract. The Tibetan Plateau (TP), known as Asia’s water tower, is quite sensitive to climate change, which is reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric mis- sions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2) on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline posi- tions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging multisource lake water levels with systematic biases being removed.
    [Show full text]
  • Algorithm Theoretical Basis Document (ATBD) for Land
    ICE, CLOUD, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products (ATL08) Contributions by Land/VEG SDT Team Members and ICESAt-2 Project Science Office (Amy Neuenschwander, Sorin Popescu, Ross Nelson, David Harding, Katherine Pitts, John Robbins, Dylan Pederson, and Ryan Sheridan) ATBD Document prepared by Amy Neuenschwander June 2018 Content reviewed: technical approach, assumptions, scientific soundness, maturity, scientific utility of the data product 21 Contents 1 INTRODUCTION 8 1.1. Background 9 1.2 Photon Counting Lidar 11 1.3 The ICESat-2 concept 12 1.4 Height Retrieval from ATLAS 16 1.5 Accuracy Expected from ATLAS 17 1.6 Additional Potential Height Errors from ATLAS 19 1.7 Dense Canopy Cases 20 1.8 Sparse Canopy Cases 20 2. ATL08: DATA PRODUCT 21 2.1 Subgroup: Land Parameters 23 2.1.1 Georeferenced_segment_number_beg 24 2.1.2 Georeferenced_segment_number_end 25 2.1.3 Segment_terrain_height_mean 25 2.1.4 Segment_terrain_height_med 25 2.1.5 Segment_terrain_height_min 25 2.1.6 Segment_terrain_height_max 26 2.1.7 Segment_terrain_height_mode 26 2.1.8 Segment_terrain_height_skew 26 2.1.9 Segment_number_terrain_photons 26 2.1.10 Segment height_interp 27 2.1.11 Segment h_te_std 27 2.1.12 Segment_terrain_height_uncertainty 27 2.1.13 Segment_terrain_slope 27 21 2.1.14 Segment number_of_photons 27 2.1.15 Segment_terrain_height_best_fit 28 2.2 Subgroup: Vegetation Parameters 28 2.2.1 Georeferenced_segment_number_beg 31 2.2.2 Georeferenced_segment_number_end 31 2.2.3
    [Show full text]
  • GLAS HDF Standard Data Product Specification Revision - November 01, 2012
    ICE, CLOUD, and Land Elevation Satellite (ICESat) Project GLAS_HDF Standard Data Product Specification Revision - November 01, 2012 SGT/Jeffrey Lee Cryospheric Sciences Laboratory Hydrospheric and Biospheric Processes NASA Goddard Space Flight Center Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration GLAS_HDF Standard Data Product Specification Revision - Table of Contents Table of Contents ............................................................................................... 1-1 List of Figures ..................................................................................................... 1-3 List of Tables ...................................................................................................... 1-3 1.0 Introduction ................................................................................................ 1-1 1.1 Identification of Document ...................................................................... 1-1 1.2 Scope ..................................................................................................... 1-1 1.3 Purpose and Objectives ......................................................................... 1-1 1.4 Acknowledgements ................................................................................ 1-1 1.5 Document Status and Schedule ............................................................. 1-2 1.6 Document Change History ..................................................................... 1-2 2.0 Related Documentation ............................................................................
    [Show full text]
  • Cloudsat-CALIPSO Launch
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CloudSat-CALIPSO Launch Press Kit April 2006 Media Contacts Erica Hupp Policy/Program (202) 358-1237 NASA Headquarters, Management [email protected] Washington Alan Buis CloudSat Mission (818) 354-0474 NASA Jet Propulsion Laboratory, [email protected] Pasadena, Calif. Emily Wilmsen Colorado Role - CloudSat (970) 491-2336 Colorado State University, [email protected] Fort Collins, Colo. Julie Simard Canada Role - CloudSat (450) 926-4370 Canadian Space Agency, [email protected] Saint-Hubert, Quebec, Canada Chris Rink CALIPSO Mission (757) 864-6786 NASA Langley Research Center, [email protected] Hampton, Va. Eliane Moreaux France Role - CALIPSO 011 33 5 61 27 33 44 Centre National d'Etudes [email protected] Spatiales, Toulouse, France George Diller Launch Operations (321) 867-2468 NASA Kennedy Space Center, [email protected] Fla. Contents General Release ......................................................................................................................... 3 Media Services Information ........................................................................................................ 5 Quick Facts ................................................................................................................................. 6 Mission Overview ....................................................................................................................... 7 CloudSat Satellite ....................................................................................................................
    [Show full text]
  • Icesat) Spacecraft Immediately Following Its Initial Mechanical Integration on June 18Th, 2002
    Goddard Space Flight Center Greenbelt, Maryland 20771 FS-2002-9-047-GSFC The Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and land Elevation Satellite (ICESat) spacecraft immediately following its initial mechanical integration on June 18th, 2002. Note that ICESat’s solar arrays have not yet been attached. Left – Gordon Casto, NASA/GSFC. Right – John Bishop, Mantech. Courtesy of Ball Aerospace & Technologies Corp. “Possible changes in the mass balance of the Antarctic and Greenland ice sheets are fundamental gaps in our understanding and are crucial to the quantification and refinement of sea-level forecasts.” —Sea-Level Change report, National Research Council (1990) “In light of…abrupt ice-sheet changes affecting global climate and sea level, enhanced emphasis on ice-sheet characterization over time is essential.” —Abrupt Climate Change report, National Research Council (2002) MISSION INTRODUCTION AND SCIENTIFIC RATIONALE Ice, Cloud and land Elevation Satellite (ICESat) Are the ice sheets that still blanket the Earth’s poles growing or shrinking? Will global sea level rise or fall? NASA’s Earth Science Enterprise (ESE) has developed the ICESat mission to provide answers to these and other questions — to help fulfill NASA’s mission to understand and protect our home planet. The primary goal of ICESat is to quantify ice sheet mass balance and understand how changes in the Earth's atmosphere and climate affect the polar ice masses and global sea level. ICESat will also measure global distributions of clouds and aerosols for studies of their effects on atmospheric processes and global change, as well as land topography, sea ice, and vegetation cover.
    [Show full text]
  • Overview of NASA's Earth Observation Systems for Hydrology
    1/21/2015 Overview of NASA’s Earth Observation Systems for Hydrology Presented by David Toll NASA Goddard Space Flight Center Code 617, Hydrological Sciences Lab Greenbelt, MD 20771 [email protected] With Contributions from Matt Rodell, Christa Peters‐ Lidard, Brad Doorn, Jared Entin, Nancy Searby, John Bolten, Scott Luthcke, Charon Birkett, Forrest Melton, Dalia Kirschbaum, George Huffman, Peggy O’Neill, Bob Brakenridge, Ana Prados, Bradley Zavodsky, Christine Lee and Dorothy Hall 22 January 2015 ACWI – SoH Meeting Present and Future NASA Earth Science Missions Planned Missions Highly relevant to hydrology SMAP, GRACE-FO, ICESat-II, JPSS, DESDynI, OCO-2 Decadal Survey Recommended Missions: CLARREO, HyspIRI, ASCENDS, SWOT, GEO-CAPE, ACE, LIST, GPM PATH, GRACE-II, SCLP, GACM, 3D-Winds 1 1/21/2015 Inadequacy of Surface Observations Issues: - Spatial coverage of existing stations - Temporal gaps and delays - Many governments unwilling to share - Measurement inconsistencies -Quality control - (Un)Representativeness of point obs Global Telecommunication System meteorological stations. Air temperature, precipitation, solar radiation, wind speed, and humidity only. USGS Groundwater Climate Response Network. Very few groundwater records available outside of River flow observations from the Global Runoff Data Centre. the U.S. Warmer colors indicate greater latency in the data record. NASA’s Hydrologic Observations Figure 1: Snow water equivalent (SWE) based on Terra/MODIS and Aqua/AMSR-E. Figure 2: Annual average precipitation from 1998 to Future observations will be provided by 2009 based on TRMM satellite observations. Future JPSS/VIIRS and DWSS/MIS. observations will be provided by GPM. Figure 5: Current lakes and reservoirs monitored by Figure 3: Daily soil moisture based on OSTM/Jason-2.
    [Show full text]
  • Aqua Terra TRMM Seawifs Aura Meteor/ SAGE GRACE Icesat
    GRACE Cloudsat Metop CALIPSO TRMM Aqua TOPEX Meteor/ SAGE GIFTS NOAA/ POES Landsat GOES MTSAT SeaWiFS Terra Aura MSG Jason ICESat SORCE 1 THE EARTH SYSTEM SCIENCE It is the science that studies the whole Earth as a system of many interacting parts and focuses on the changes within and between those parts. THE EARTH SYSTEM 2 THE EARTH'S ENERGY BUDGET Three main sources: external (solar radiation), internal (geothermal energy), and from Earth-Moon-Sun tidal interactions (a very small component). THE HYDROLOGIC CYCLE 3 4 5 THE GREENHOUSE EFFECT Concentration of carbon dioxide in dry air, since 1958, measured at the Mauna Loa Observatory, Hawaii (given in parts per million by volume = ppbv/1000). Annual fluctuations reflect seasonal changes in biologic uptake of CO2, while the long-term trend shows a persistent increase in the atmospheric concentration of this greenhouse gas. 6 Since the beginning of the Industrial Revolution, about 1850, the atmospheric concentration of CO2 has risen at an increasing rate (A). The increase matches the increasing rate at which CO2 has been released through the burning of fossil fuels (B). CLIMATE CHANGE 7 EARTH'S CLIMATE SYSTEM ESTIMATES OF FUTURE AVERAGE GLOBAL TEMPERATURE RISE DUE TO THE GREENHOUSE A = "Business as usual," with energy EFFECT BASED ON DIFFERENT ASSUMPTIONS supply dominated by coal, continuing deforestation, and limited or no control of methane, nitrous oxide, and carbon monoxide emissions. B = A shift toward lower-carbon fuels (e.g., natural gas), coupled with large increases in fuel efficiency, reversal of deforestation trends, and stringent carbon monoxide controls. C = A shift toward renewable sources (solar, hydro-and wind power) and nuclear energy in the second half of the twenty-first century, a phaseout of CFC emissions, and limitations on agricultural methane and nitrous oxide emissions.
    [Show full text]
  • GPM Program Overview
    Science Mission Directorate NASA Program Status Ramesh Kakar Weather Focus Area Leader TRMM, Aqua and GPM Program Scientist June 21, 2010 NASA Operating Missions Mission Program Sci Launch Phase Extension to Dec Jan Feb Comments TRMM R. Kakar 11/27/1997 Extended 9/30/2011 Participates in Hurricane Related Research QuikSCAT E. Lindstrom 6/19/1999 Extended 9/30/2011 Participated in Hurricane Related Research Terra G. Gutman 12/18/1999 Extended 9/30/2011 Participates in Hurricane Related Research ACRIMSat R. Kakar 12/20/1999 Extended 9/30/2011 NMP EO-1 G. Gutman 11/21/2000 Extended 9/30/2011 Jason E. Lindstrom 12/7/2001 Extended 9/30/2011 Participates in Hurricane Related Research GRACE J. Labrecque 3/17/2002 Extended 9/30/2011 Aqua R. Kakar 5/3/2002 Extended 9/30/2011 Participates in Hurricane Related Research ICESat T. Wagner 1/12/2003 Extended 9/30/2010 SORCE R. Kakar 1/25/2003 Extended 9/30/2011 Aura E. Hilsenrath 7/15/2004 Prime thru 9/10 9/30/2011 Cloudsat D. Considine 4/28/2006 Extended 9/30/2011 Participates in Hurricane Related Research CALIPSO D. Considine 4/28/2006 Extended 9/30/2011 Participates in Hurricane Related Research OSTM E. Lindstrom 6/20/2008 Prime thru 6/11 Ends 6/30/11 Participates in Hurricane Related Research On plan, adequate margin, no significant issues. Problems, working to resolve within planned margin Problems, not enough margin to recover ESD Missions in Development & Formulation GLORY AQUARIUS NPP Late 2010 Late 2010 Sep 2011 LDCM Dec 2012 GPM ICESat-2 SMAP Jul 2013 Late 2015 Nov 2014 Nov 2014 3 TRMM Status
    [Show full text]
  • Remote Sensing I: Basics
    Remote Sensing I: Basics Kelly M. Brunt Earth System Science Interdisciplinary Center, University of Maryland Cryospheric Science Laboratory, NASA Goddard Space Flight Center [email protected] (Based on Nick Barrand’s UAF Summer School in Glaciology 2014 lecture) ROUGH Outline: Electromagnetic Radiation Electromagnetic Spectrum NASA Satellites and the Electromagnetic Spectrum Passive & Active instruments Types of Survey Methods Types of Orbits Resolution Platforms & Sensors (Speaker’s bias: NASA, lidar, and Antarctica…) Electromagnetic Radiation - Energy derived from oscillating magnetic and electrostatic fields - Properties include wavelength (, in m) and frequency (, in Hz) related to (speed of light, 299,792,458 m/s) by: Wikipedia Electromagnetic Radiation Electromagnetic Spectrum NASA (increasing frequency…) Electromagnetic Radiation Electromagnetic Spectrum NASA (increasing wavelength…) Radiation in the Atmosphere NASA Cryosphere Specular: Smooth surface; energy reflected in 1 direction (e.g., sea ice lead) Diffuse: Rough surface; energy reflected in many directions (e.g., pressure ridges) Nick Barrand, UAF Summer School in Glaciology, 2014 NASA Earth-orbiting Satellites (‘observatory’ or ‘bus’) NASA Satellite, observatory, or bus: everything (i.e., instrument, thrust, power, and navigation components…) e.g., Terra Instrument: the part making the measurement; often satellites have suites of instruments e.g., ASTER, MODIS (on satellite Terra) NASA Earth-orbiting Satellites (‘observatory’ or ‘bus’) Radio & Optical; weather Optical;
    [Show full text]
  • 1 Ice, Cloud, and Land Elevation Satellite 2 (Icesat-2) 2 3 Algorithm Theoretical Basis Document (ATBD) 4 5 for 6 7 Land - Vegetation Along-Track Products (ATL08) 8
    1 Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) 2 3 Algorithm Theoretical Basis Document (ATBD) 4 5 for 6 7 Land - Vegetation Along-Track Products (ATL08) 8 9 10 11 Contributions by Land/Vegetation SDT Team Members 12 and ICESat-2 ProJect Science Office 13 (Amy Neuenschwander, Katherine Pitts, Benjamin Jelley, John Robbins, 14 Brad Klotz, Sorin Popescu, Ross Nelson, David Harding, Dylan Pederson, 15 and Ryan Sheridan) 16 17 18 ATBD prepared by 19 Amy Neuenschwander and 20 Katherine Pitts 21 22 23 15 January 2020 24 (Corresponds to release 003 of the ICESat-2 ATL08 data) 25 26 27 Content reviewed: technical approach, assumptions, scientific soundness, 28 maturity, scientific utility of the data product 29 1 30 2 33 ATL08 algorithm and product change history 34 ATBD Version Change 2016 Nov Product segment size changed from 250 signal photons to 100 m using five 20m segments from ATL03 (Sec 2) 2016 Nov Filtered signal classification flag removed from classed_pc_flag (Sec 2.3.2) 2016 Nov DRAGANN signal flag added (Sec 2.3.4) 2016 Nov Do not report segment statistics if too few ground photons within segment (Sec 4.15 (3)) 2016 Nov Product parameters added: h_canopy_uncertainty, landsat_flag, d_flag, delta_time_beg, delta_time_end, night_flag, msw_flag (Sec 2) 2017 May Revised region boundaries to be separated by continent (Sec 2) 2017 May Alternative DRAGANN parameter calculation added (Sec 4.3.1) 2017 May Set canopy flag = 0 when L-km segment is over Antarctica or Greenland regions (Sec 4.4 (1)) 2017 May Change initial canopy filter
    [Show full text]
  • GPS-Based Precision Ohit Determination for a New Era of Altimeter Satellites: Jason-1 and Icesat
    GPS-based Precision Ohit Determination for a New Era of Altimeter Satellites: Jason-1 and ICESat Scott B. Luthcke, David D. Rowlands and Frank G. Lemoine NASA Goddard Space Flight Center Nikita P. Zelensky and Teresa A. Williams Raytheon lTSS ABSTRACT Accurate positioning of the satellite center of mass is necessary in meeting an altimeter mission's science goals. The fundamental science observation is an altimetric derived topographic height. Errors in positioning the satellite's center of mass directly impact this fundamental observation. Therefore, orbit error is a critical Component in the error budget of altimeter satellites. With the launch of the Jason-1 radar altimeter @ec. 2001) and the ICESat laser altimeter (Jan. 2003) a new era of satellite altimetry has begun. Both missions pose several challenges for precision orbit determination (POD). The Jason-1 radial orbit accuracy goal is 1 cm,while ICESat (600 km) at a much lower altitude than Jason-1 (1300 km), has a radial orbit accuracy requirement of less than 5 cm. Fortunately, Jason-1 and ICESat POD can rely on near continuous tracking data from the dual frequency codeless BlackJack GPS receiver and Satellite Laser Ranging. Analysis of current GPS-based solution performance indicates the l-cm radial orbit accuracy goal is being met for Jason-1, while radial orbit accuracy for ICESat is well below the 54x1 mission requirement. A brief overview of the GPS precision orbit determination methodology and results for both J~0ii-lmiid IcEszt &-e prdstd. INTRODUCTION On December 7,2001 the joint UsFrench Jason-lsatellite radar altimeter was launched as the follow-on to the highly successful TOPEXPoseidon (TP) mission.
    [Show full text]
  • Overview of the Icesat Mission B
    GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L21S01, doi:10.1029/2005GL024009, 2005 Overview of the ICESat Mission B. E. Schutz Center for Space Research, University of Texas at Austin, Austin, Texas, USA H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Received 8 July 2005; revised 8 September 2005; accepted 7 October 2005; published 2 November 2005. [1] The Geoscience Laser Altimeter System (GLAS) on the range vector (the position vector of the illuminated spot the NASA Ice, Cloud and land Elevation Satellite (ICESat) centroid with respect to the instrument, alternatively re- has provided a view of the Earth in three dimensions with ferred to as the altitude vector). The resultant vector is the unprecedented accuracy. Although the primary objectives position of the spot (or footprint), which can be readily focus on polar ice sheet mass balance, the GLAS transformed into geodetic latitude, longitude and height (or measurements, distributed in 15 science data products, elevation) with respect to a reference ellipsoid. The funda- have interdisciplinary application to land topography, mental data product consists of this geolocated spot and its hydrology, vegetation canopy heights, cloud heights and surface arrival time (time tag). atmospheric aerosol distributions. Early laser life issues [4] This measurement concept was implemented on have been mitigated with the adoption of 33-day operation ICESat using GLAS, which was designed, constructed periods, three times per year, designed to document intra- and tested at NASA Goddard Space Flight Center (GSFC) and inter-annual polar ice changes in accordance with to meet the science requirements.
    [Show full text]