NASA's Earth Science Division
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gao-16-309Sp, Nasa
United States Government Accountability Office Report to Congressional Committees March 2016 NASA Assessments of Major Projects GAO-16-309SP March 2016 NASA Assessments of Major Projects Highlights of GAO-16-309SP, a report to congressional committees Why GAO Did This Study What GAO Found This report provides GAO’s annual The cost and schedule performance of the National Aeronautics and Space snapshot of how well NASA is planning Administration’s (NASA) portfolio of major projects has improved over the past 5 and executing its major acquisition years, and most current projects are adhering to their committed cost and projects. In March 2015, GAO found schedule baselines. Over the last 2 years, eight projects in the portfolio that projects continued a general established cost and schedule baselines. As the figure below shows, as the positive trend of limiting cost and average age of the portfolio has decreased, the cost performance of the portfolio schedule growth, maturing has improved, because new projects are less likely to have experienced cost technologies, and stabilizing designs, growth. but that NASA faced several challenges that could affect its ability to Development Cost Performance of NASA’s Major Project Portfolio Has Improved as Average effectively manage its portfolio. Project Age Has Decreased The explanatory statement of the House Committee on Appropriations accompanying the Omnibus Appropriations Act, 2009 included a provision for GAO to prepare project status reports on selected large-scale NASA programs, projects, and activities. This is GAO’s eighth annual assessment of NASA’s major projects. This report describes (1) the cost and schedule performance of NASA’s portfolio of major projects, (2) the maturity of technologies and stability of project designs at key milestones, and (3) NASA’s progress in implementing Note: GAO presents cost and schedule growth both including and excluding JWST because the initiatives to manage acquisition risk magnitude of JWST’s cost growth has historically masked the performance of the rest of the portfolio. -
The Earth Observer. July
National Aeronautics and Space Administration The Earth Observer. July - August 2012. Volume 24, Issue 4. Editor’s Corner Steve Platnick obser ervth EOS Senior Project Scientist The joint NASA–U.S. Geological Survey (USGS) Landsat program celebrated a major milestone on July 23 with the 40th anniversary of the launch of the Landsat-1 mission—then known as the Earth Resources and Technology Satellite (ERTS). Landsat-1 was the first in a series of seven Landsat satellites launched to date. At least one Landsat satellite has been in operation at all times over the past four decades providing an uninter- rupted record of images of Earth’s land surface. This has allowed researchers to observe patterns of land use from space and also document how the land surface is changing with time. Numerous operational applications of Landsat data have also been developed, leading to improved management of resources and informed land use policy decisions. (The image montage at the bottom of this page shows six examples of how Landsat data has been used over the last four decades.) To commemorate the anniversary, NASA and the USGS helped organize and participated in several events on July 23. A press briefing was held over the lunch hour at the Newseum in Washington, DC, where presenta- tions included the results of a My American Landscape contest. Earlier this year NASA and the USGS sent out a press release asking Americans to describe landscape change that had impacted their lives and local areas. Of the many responses received, six were chosen for discussion at the press briefing with the changes depicted in time series or pairs of Landsat images. -
High-Temporal-Resolution Water Level and Storage Change Data Sets for Lakes on the Tibetan Plateau During 2000–2017 Using Mult
Earth Syst. Sci. Data, 11, 1603–1627, 2019 https://doi.org/10.5194/essd-11-1603-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions Xingdong Li1, Di Long1, Qi Huang1, Pengfei Han1, Fanyu Zhao1, and Yoshihide Wada2 1State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China 2International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria Correspondence: Di Long ([email protected]) Received: 21 February 2019 – Discussion started: 15 March 2019 Revised: 4 September 2019 – Accepted: 22 September 2019 – Published: 28 October 2019 Abstract. The Tibetan Plateau (TP), known as Asia’s water tower, is quite sensitive to climate change, which is reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric mis- sions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2) on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline posi- tions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging multisource lake water levels with systematic biases being removed. -
Cloudsat CALIPSO
www.nasa.gov andSpaceAdministration National Aeronautics & CloudSat CALIPSO Clean air is important to everyone’s health and well-being. Clean air is vital to life on Earth. An average adult breathes more than 3000 gallons of air every day. In some places, the air we breathe is polluted. Human activities such as driving cars and trucks, burning coal and oil, and manufacturing chemicals release gases and small particles known as aerosols into the atmosphere. Natural processes such as for- est fires and wind-blown desert dust also produce large amounts of aerosols, but roughly half of the to- tal aerosols worldwide results from human activities. Aerosol particles are so small they can remain sus- pended in the air for days or weeks. Smaller aerosols can be breathed into the lungs. In high enough con- centrations, pollution aerosols can threaten human health. Aerosols can also impact our environment. Aerosols reflect sunlight back to space, cooling the Earth’s surface and some types of aerosols also absorb sunlight—heating the atmosphere. Because clouds form on aerosol particles, changes in aerosols can change clouds and even precipitation. These effects can change atmospheric circulation patterns, and, over time, even the Earth’s climate. The Air We Breathe The Air We We need better information, on a global scale from satellites, on where aerosols are produced and where they go. Aerosols can be carried through the atmosphere-traveling hundreds or thousands of miles from their sources. We need this satellite infor- mation to improve daily forecasts of air quality and long-term forecasts of climate change. -
Algorithm Theoretical Basis Document (ATBD) for Land
ICE, CLOUD, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products (ATL08) Contributions by Land/VEG SDT Team Members and ICESAt-2 Project Science Office (Amy Neuenschwander, Sorin Popescu, Ross Nelson, David Harding, Katherine Pitts, John Robbins, Dylan Pederson, and Ryan Sheridan) ATBD Document prepared by Amy Neuenschwander June 2018 Content reviewed: technical approach, assumptions, scientific soundness, maturity, scientific utility of the data product 21 Contents 1 INTRODUCTION 8 1.1. Background 9 1.2 Photon Counting Lidar 11 1.3 The ICESat-2 concept 12 1.4 Height Retrieval from ATLAS 16 1.5 Accuracy Expected from ATLAS 17 1.6 Additional Potential Height Errors from ATLAS 19 1.7 Dense Canopy Cases 20 1.8 Sparse Canopy Cases 20 2. ATL08: DATA PRODUCT 21 2.1 Subgroup: Land Parameters 23 2.1.1 Georeferenced_segment_number_beg 24 2.1.2 Georeferenced_segment_number_end 25 2.1.3 Segment_terrain_height_mean 25 2.1.4 Segment_terrain_height_med 25 2.1.5 Segment_terrain_height_min 25 2.1.6 Segment_terrain_height_max 26 2.1.7 Segment_terrain_height_mode 26 2.1.8 Segment_terrain_height_skew 26 2.1.9 Segment_number_terrain_photons 26 2.1.10 Segment height_interp 27 2.1.11 Segment h_te_std 27 2.1.12 Segment_terrain_height_uncertainty 27 2.1.13 Segment_terrain_slope 27 21 2.1.14 Segment number_of_photons 27 2.1.15 Segment_terrain_height_best_fit 28 2.2 Subgroup: Vegetation Parameters 28 2.2.1 Georeferenced_segment_number_beg 31 2.2.2 Georeferenced_segment_number_end 31 2.2.3 -
GLAS HDF Standard Data Product Specification Revision - November 01, 2012
ICE, CLOUD, and Land Elevation Satellite (ICESat) Project GLAS_HDF Standard Data Product Specification Revision - November 01, 2012 SGT/Jeffrey Lee Cryospheric Sciences Laboratory Hydrospheric and Biospheric Processes NASA Goddard Space Flight Center Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration GLAS_HDF Standard Data Product Specification Revision - Table of Contents Table of Contents ............................................................................................... 1-1 List of Figures ..................................................................................................... 1-3 List of Tables ...................................................................................................... 1-3 1.0 Introduction ................................................................................................ 1-1 1.1 Identification of Document ...................................................................... 1-1 1.2 Scope ..................................................................................................... 1-1 1.3 Purpose and Objectives ......................................................................... 1-1 1.4 Acknowledgements ................................................................................ 1-1 1.5 Document Status and Schedule ............................................................. 1-2 1.6 Document Change History ..................................................................... 1-2 2.0 Related Documentation ............................................................................ -
The Web of Glory: a Study of the Concept of Man As Expressed in the Christian Fantasy Novels of Charles Williams
Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1964 The Web of Glory: A Study of the Concept of Man as Expressed in the Christian Fantasy Novels of Charles Williams Beverlee Fissinger Smith Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the English Language and Literature Commons Recommended Citation Smith, Beverlee Fissinger, "The Web of Glory: A Study of the Concept of Man as Expressed in the Christian Fantasy Novels of Charles Williams" (1964). Master's Theses. 1896. https://ecommons.luc.edu/luc_theses/1896 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. Copyright © 1964 Beverlee Fissinger Smith THE WEB OF GLORY: A STUDY OF THE CONCEPT OF MAl{ AS EXPRESSED IN THE CHRISTIAN FANTASY NOVELS OF CHARLES WILLIAMS BEVERLEE FISSINGER SMITH A Th•• is Submitted to the Faculty or the Graduate School ot Loyola University 1n Partial Pultillment at the Requirement. tor the Degree ot Master ot Arts June 1964 TABLE OF CONTENTS Page Lite. • • • • • • • • • • • • • • • • • • • • • • 1 8ig1a. • • • • • • • • • • • • • • • • • • • • •• ii Chapter I. AN DrfRODUOTION TO CHARLES WILLIAMS. • • • • 1 Purpose and Procedure ot Thesis--Wl1liama the Man- Family Baokground--Education--Oxtord University Press--Wll1iwms the wrlter-~Intel1ectual Gitts- Conversations with the "Oxfol'd Circlett·... the Poet- Beatriclan rove in Early Sonnets--Orlginality ot Later Poet17 II. THE WEB OF GLORY. • • • • • • • • • • • • •• 18 Saoramental View ot Man and Nature--God as the Source 01' Good and Evll--Tne Way ot Attil'mation- Co-tnherenoe--Tbe Index ot the Body--The Image 01' the City--Substitution and Exchange--Meohanistio and Moral Ttme--Oonversion of Energies--In-coherence and Isolation--The Perversion of tbe Images III. -
Master's Thesis
2009:029 MASTER'S THESIS Collocating Satellite-Based Radar and Radiometer Measurements to Develop an Ice Water Path Retrieval Gerrit Holl Luleå University of Technology Master Thesis, Continuation Courses Space Science and Technology Department of Space Science, Kiruna 2009:029 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--09/029--SE Master's Thesis Collocating satellite-based radar and radiometer measurements to develop an ice water path retrieval Gerrit Holl June 11, 2009 Approximate footprints for different sensors 4480 CloudSat MHS 4460 HIRS AMSU−A 4440 4420 4400 4380 UTM y−pos (km) 4360 4340 4320 4300 390 400 410 420 430 440 450 460 470 480 UTM x−pos (km) Abstract Remote sensing satellites can roughly be divided in operational satellites and scientific satellites. Generally speaking, operational satellites have a long lifetime and often several near-identical copies, whereas scientific satellites are unique and have a more limited lifetime, but produce more advanced data. An example of a scientific satellite is the CloudSat, a NASA satellite flying in the so-called "A-Train" formation with other satellites. Examples of operational satellites are the NOAA and MetOp meteorological satellite series. CloudSat carries a 94 GHz nadir viewing radar instrument measuring pro- files of clouds. The NOAA-15 to NOAA-18 and MetOp-A satellites carry radiometers at various frequencies ranging from the infrared (3.76 µm) to around 183 GHz (≈ 1:6 mm). The full range is covered by the High Res- olution Infrared Radiation Sounder (HIRS) and the Advanced Microwave Sounding Units (AMSU-A and AMSU-B). On newer satellites, AMSU-B has been replaced by the Microwave Humidity Sounder (MHS) with nearly the same characteristics. -
January/February 2012 Issue
Volume 37, Issue 4 AIAA Houston Section www.aiaa-houston.org January / February 2012 First Confirmation: Planet Kepler-22b HubbleAn Revisited Earth-Like Exoplanet on NASA’s in a Habitable 50th Anniversary Zone Wes Kelly, Triton Systems LLC AIAA Houston Section Horizons January / February 2012 Page 1 January / February 2012 T A B L E O F C O N T E N T S (Page numbers are linked on this page. To return here, click on tops of pages.) From the Chair 3 HOUSTON From the Editor 4 Horizons is a bimonthly publication of the Houston Section Cover Story: Kepler-22b, by Wes Kelly, Triton Systems LLC 5 of the American Institute of Aeronautics and Astronautics. A Peek at Cassini After Seven Years in Orbit, by Daniel R. Adamo 14 Douglas Yazell Sustainable Use of Space Through Orbital Debris Control, by N. L. Johnson 18 Editor Past Editors: Dr. Steven E. Everett 1940 Air Terminal Museum at Hobby Airport 19 Editing team: Don Kulba, Ellen Gillespie, Robert Bere- mand, Alan Simon, Dr. Steven Everett, Shen Ge Isle of Man - An Excellent Space for Space, by Shen Ge 20 Regular contributors: Dr. Steven Everett, Don Kulba, Philippe Mairet, Alan Simon, Scott Lowther From our French Sister Section 3AF MP, Biodiversity and Light Pollution 22 Contributors this issue: Dr. Albert A. Jackson IV, Daniel R. Adamo, Wes Kelly Warp Drives: A Curious History, by Dr. Albert A. Jackson IV 26 AIAA Houston Section Phobos-Grunt’s Inexorable Trans-Mars Injection Countdown Clock, Adamo 30 Executive Council Phoenix-E, by Scott Lowther, Aerospace Projects Review 40 Sean Carter EAA Chapter 12 (Houston), The Experimental Aircraft Association 43 Chair Councilors Current Events 44 Daniel Nobles Irene Chan Chair-Elect Secretary Staying Informed 46 Sarah Shull John Kostrzewski AIAA Calendar 50 Past Chair Treasurer Cranium Cruncher 51 Julie Read Dr. -
Cloudsat-CALIPSO Launch
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CloudSat-CALIPSO Launch Press Kit April 2006 Media Contacts Erica Hupp Policy/Program (202) 358-1237 NASA Headquarters, Management [email protected] Washington Alan Buis CloudSat Mission (818) 354-0474 NASA Jet Propulsion Laboratory, [email protected] Pasadena, Calif. Emily Wilmsen Colorado Role - CloudSat (970) 491-2336 Colorado State University, [email protected] Fort Collins, Colo. Julie Simard Canada Role - CloudSat (450) 926-4370 Canadian Space Agency, [email protected] Saint-Hubert, Quebec, Canada Chris Rink CALIPSO Mission (757) 864-6786 NASA Langley Research Center, [email protected] Hampton, Va. Eliane Moreaux France Role - CALIPSO 011 33 5 61 27 33 44 Centre National d'Etudes [email protected] Spatiales, Toulouse, France George Diller Launch Operations (321) 867-2468 NASA Kennedy Space Center, [email protected] Fla. Contents General Release ......................................................................................................................... 3 Media Services Information ........................................................................................................ 5 Quick Facts ................................................................................................................................. 6 Mission Overview ....................................................................................................................... 7 CloudSat Satellite .................................................................................................................... -
Learning from the Nustar Launch Delay
STORY | ASK MAGAZINE | 5 laitbrO/hceltaC-LPJ/ASA N:itder CotohP N:itder laitbrO/hceltaC-LPJ/ASA Engineers in the final stages of assembling NuSTAR. LEARNING FROM THE NUSTAR LAUNCH DELAY NuSTAR, the Nuclear Spectroscopic Telescope Array, contains the first focusing telescopes designed to look at high-energy X-ray radiation. It is expected to contribute to a better understanding of collapsing stars and black holes. BY DON COHEN 6 | ASK MAGAZINE Because NuSTAR is designed to function in an equatorial through a series of increasingly demanding flights that start by orbit, it launched on a Pegasus XL rocket from a point south determining basic airworthiness and eventually map the limits of Kwajalein Atoll, in the Marshall Islands, on June 13, 2012. of safe performance. Simulations matter for aircraft design and Built by Orbital Sciences Corporation, the Pegasus is carried construction, too, of course, but not as critically. to approximately 39,000 ft. by an L-1011 aircraft. Released at Although data were arriving late from Orbital, the LSP that altitude, the three-stage, winged rocket ignites its first-stage technical team worked extremely hard to execute the plan motor to continue its journey to orbit. during February and early March, and the mid-March launch The June launch came almost three months after a planned date still seemed achievable, provided no further serious issues early March launch date. The story of that delay—why it were identified. Unfortunately, as the date for the all-important happened and what both NASA and Orbital Sciences learned guidance, navigation, and control review approached, both from the experience—offers insight into how NASA deals with Orbital and LSP were finding that simulations exhibited far too technical risks and into the agency’s developing relationships many failed cases to proceed. -
GPM Precipitation Estimation and Validation Activities
CGMS-36, NASA-WP-02 Prepared by NASA Agenda Item: WGII/4 Discussed in Working Groups GPM Precipitation Estimation and Validation Activities Precipitation estimation and validation activities of the Global Precipitation Measurement (GPM) mission, a NASA/JAXA joint satellite effort is reported as requested in CGMS-35 Action Item 35.22. An introduction to GPM, a status of GPM estimation and validation activities, and future plans are provided. CGMS-36, NASA-WP-02 1 Introduction The center piece of NASA’s activities on precipitation estimation and validation is its role in the Global Precipitation Measurement (GPM) mission, being developed primarily by NASA and the Japan Aerospace and Exploration Agency (JAXA). GPM marks an evolution from the current effort built around uncoordinated individual satellite missions towards one coordinated, inter-calibrated satellite constellation providing uniform global precipitation products. An important component as a starting point in creating this coordinated precipitation- measuring constellation already exists, in the form of the highly successful U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), in operation since 1997, which continues to provide first-generation tropical precipitation estimates used in both societal applications and scientific research. The GPM mission will serve as the cornerstone for international collaboration on satellite precipitation algorithm research, ground validation, data processing, and product dissemination. To these ends, NASA is working with the international science community to develop a consensus reference standard for cross-calibration of microwave radiometers to produce uniform global precipitation products. NASA and JAXA have devoted substantial resources through TRMM and GPM in data processing and science team support, to include the development of Level 1C prototypes for intercalibration of current radiometers using the TRMM PR and TMI as a reference.