Earth Observing System (EOS) Aura Science Data Validation Plan

Total Page:16

File Type:pdf, Size:1020Kb

Earth Observing System (EOS) Aura Science Data Validation Plan Earth Observing System (EOS) Aura Science Data Validation Plan Calibration & Modeling Aircraft Ground-based & Balloon Data Campaigns Satellite Data Version 1.0 July 12, 2001 EOS Aura Science Data Validation Plan Executive Summary I. The Aura Mission The Aura satellite is scheduled to be launched in 2003 in a sun-synchronous polar orbit for a nominal mission of five years. The four Aura instruments are: the High Resolution Dynamics Limb Sounder (HIRDLS), measuring infrared emission profiles from high resolution atmospheric limb scans behind Aura; the Microwave Limb Sounder (MLS), obtaining limb emission profiles ahead of the satellite; the Ozone Monitoring Instrument (OMI), a nadir- viewing UV/VIS imaging spectrometer with high spatial resolution; the Tropospheric Emission Spectrometer (TES), a Fourier Transform infrared spectrometer measuring in both the nadir and the limb mode behind Aura. Section 2 of this document gives the Aura science goals, a description of the instruments and measurement characteristics. The top-level objectives are to resolve the following science questions: • Is the ozone layer changing as expected? • Do we understand the transport of gases within the stratosphere and between the stratosphere and troposphere? • What are the sources and distributions of tropospheric pollutants? • What are the roles of upper tropospheric water vapor, aerosols, and ozone in climate change? The main products from Aura will be: (1) Stratospheric profiles of temperature, O3, H2O, OH, HO2, CH4, CO, HCN, CH3CN, N2O, HNO3, NO, NO2, N2O5, HCl, ClO, ClONO2, HOCl, CF2Cl2, CFCl3, BrO, and aerosol extinction; (2) Tropospheric profiles of temperature, O3, H2O, CH4, CO, and HNO3; upper tropospheric observations of NO, NO2, and HCN; tropospheric column densities of O3 and NO2. (3) Column densities of O3, NO2, HCHO, BrO, OClO. (4) aerosol optical thickness. (5) cloud information. (6) volcanic SO2. Section 3 provides more details about these products and their expected uncertainties. II. Summary of Aura Plans for Pre-launch Activities Three major pre-launch activities that are necessary for successful (post-launch) validation of Aura products are: (1) Instrument calibration, (2) Algorithm testing, and (3) Compilation of spectroscopic data and other databases. These are discussed in section 4. II.1 Instrument Calibration Instrument calibration is closely tied to the continuing hardware development and testing of the Aura instruments. Each instrument will have detailed specific issues and schedules to follow. Pre-launch instrument and Project reviews and reports provide the means to assess the progress of the calibration plans that are briefly discussed (section 4.1). i II.2 Algorithm Testing Pre-launch algorithm testing is discussed in section 4.2. The success of this testing directly impacts the quality of processed data after launch. Current test plans are summarized for each instrument team’s algorithm. Where feasible, algorithms will be tested on data obtained by earlier satellite instruments. Algorithm mathematical approaches and some accuracy estimates are given in the Algorithm Theoretical Basis Documents. The Algorithm Working Group will guide some of the common activities (e.g., the use of a common model atmosphere for simulations and end-to-end testing), but much of the detailed work rests within each instrument team. Updates regarding algorithm status are ongoing and planned on a regular basis before the launch-ready software deliveries. II.3 Spectroscopic Data and Other Databases Databases of interest to the Aura instrument teams are identified, along with needs for new spectroscopic data (section 4.3). Since spectroscopic data generally come from outside the instrument teams, such needs were recently included as part of a NASA Research Announcement towards validation of data from the Aura and Aqua platforms. Through this and similar efforts, it is expected that many of the desired improvements in these databases will be met before the Aura launch. However, some important items (notably, information on the challenging HNO3 infrared bands of relevance to both HIRDLS and TES, and on O2-O2 visible absorption cross sections for OMI) will require more attention in order for the satellite measurement accuracy requirements to be met. As each instrument team stays abreast of the uncertainties that remain in these databases, proper estimates of expected post-launch accuracy in the retrieved geophysical products can be made; this is a crucial and time consuming aspect of the validation assessments. Other pre-launch activities currently underway include the gathering and/or development of data sets for use in the retrievals and/or simulations (climatology, operational meteorological data, or model values), coincidence predictor software, as well as gathering of other databases such as surface albedo and emissivity. II.4 Models Atmospheric models have several pre-launch applications to Aura validation. Constituent fields from atmospheric models will be used in synthetic data needed for algorithm testing. These constituent fields will also be used to develop strategies to obtain optimal information from comparisons of correlative observations with Aura measurements, especially in the upper troposphere and lower stratosphere where temporal and spatial scales of variability are much smaller than in the middle and upper stratosphere. Model fields will be used to develop quantitative requirements for coincidence criteria and also to develop statistical methods of comparison. III. Summary of Aura Plans for Post-Launch Activities The following paragraphs summarize the plans for validation activities following Aura launch as given in more detail in section 5. This plan will evolve and will include plans for correlative data location/extraction, formats, and data exchange protocols (section 6), as well as coincidence predictor software (also mentioned in section 4). Some of the specifics of this planning will have to await further definition of the investigations to be selected in support of Aura validation and science. ii III.1 Aura Measurements and Validation Overview Tables I.1, I.2, and I.3 summarize the measurements needed for validation of stratospheric profiles, tropospheric profiles, and column densities and other needs, respectively. Expected satellite, ground-based, and sonde data sources and opportunities are listed generically (for more details, see Table 5.3), with columns for satellite and ground-based data indicating expected amounts and quality/extent of match with Aura data. A priority column (with 1 for high, 2 for medium, 3 for lower priority) is used to indicate correlative data need as well as scientific importance of the Aura measurements (based on section 5.2.3.2). More details for each product can be found in section 5.2.3.3. Although a significant number of tropospheric chemistry campaigns have occurred in the 1990’s, there are no global data bases for most tropospheric constituents. Validation activities for tropospheric data are necessary over a broad range of latitudes and seasons. III.2 Aerosols and Clouds Besides the scientific interest in aerosols and clouds, these particles can affect the retrievals of other Aura products in the lower stratosphere and troposphere. OMI is sensitive to light- absorbing lower tropospheric particles (desert dust, particles from fires); HIRDLS and TES will sense stratospheric sulfate, polar stratospheric cloud, and upper tropospheric cirrus particles; the MLS experiment senses large particles (larger than 100 µm). A key validation source for the OMI experiment will be the aerosol optical thickness and single scattering albedo values measured by the AERONET set of ground based instruments. The primary measurements desired for HIRDLS and TES are particle size measurements of sulfate, PSCs, and upper tropospheric cirrus, and lidar measurements of aerosol spatial distributions, as well as other satellite observations of the extinction of the three types of particles. Correlative tropospheric aerosol composition information would also be useful. For the MLS cloud ice and OMI cloud products, the primary validation will use data from the Earth System Science Pathfinder (ESSP) Project mission CloudSat and ESSP3 (formerly PICASSO-CENA), but for MLS campaigns including cloud measurements of large ice particles are desirable. Measurements of the composition of stratospheric PSCs would allow us to relate satellite spectral information to composition. III.3 Column Densities The most important, currently unmet, validation need for OMI column densities is for tropospheric NO2 under polluted as well as clean conditions; tropospheric ozone column densities are also desirable, as part of Aura-related campaigns. Under polluted NO2 conditions, column and profile information in the lower troposphere is essential for the column density validation. Choices for this validation requirement are currently limited. The ozone column measurement, also high priority, can be validated by Brewer Dobson instruments, integrating sonde measurements or by comparison to other satellite measurements (i.e. TOMS, GOME, SCIAMACHY). Again, not many of these instruments are located in very polluted areas, thus additional measurements are needed. An aircraft campaign (e.g., with a UV-VIS DOAS-type instrument aboard) in which measurements of tropospheric and stratospheric profiles and column densities of NO2 and O3 are performed, can be used for these purposes (see also III.8 and III.9). iii Table I.1. Aura stratospheric
Recommended publications
  • Journal Vol38 No001 Pp107-116
    Vol. Vol. 38 No. I Journal <J/' the Communications Research Lahoratory March 1991 Printed Printed in Tokyo ‘ Japan pp. 107 116 Review CANADIAN SATELLITE COMMUNICATIONS PROGRAM By M. H. KHAN* (Received (Received on August 27, 1990) ABSTRACT In In 1962, Canada became the third nation in the world, after Soviet Union and the United States, States, to pioneer satellite communication. Sine 巴then it has enjoyed a series of impressive firs: it was the first country to establish a commercial satellite communication system, the first to experiment experiment with direct broadcast satellite systems and the first to conceive a mobile communica- tions tions systems via satellite. In future application of highly sophisticated synthetic aperture radar satellite satellite for remote sensing, surveying etc. are planned. In this paper an overview of Canadian Satellite Satellite Communication Program will be presented. 1. 1. Introduction Canada has a land area of almost 0I million square kilometers and a population of 24 million people. people. Although 75 % of its population live in urban areas that are within 350 kilometers of the Canadian-US border, these communities are spread out on an direction east-west by more than 4000 kilometers. In addition there are many small, relatively isolated communities located in the north. north. Providing a reliable communication and broadcasting services to such a widely dispersed population population using conventional terrestrial systems could be a major technical and financial problem. problem. As a result Canadian Government and industry were quick to appreciate the potential of satellite satellite communication for domestic and international use and capitalize on it.
    [Show full text]
  • High-Temporal-Resolution Water Level and Storage Change Data Sets for Lakes on the Tibetan Plateau During 2000–2017 Using Mult
    Earth Syst. Sci. Data, 11, 1603–1627, 2019 https://doi.org/10.5194/essd-11-1603-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions Xingdong Li1, Di Long1, Qi Huang1, Pengfei Han1, Fanyu Zhao1, and Yoshihide Wada2 1State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China 2International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria Correspondence: Di Long ([email protected]) Received: 21 February 2019 – Discussion started: 15 March 2019 Revised: 4 September 2019 – Accepted: 22 September 2019 – Published: 28 October 2019 Abstract. The Tibetan Plateau (TP), known as Asia’s water tower, is quite sensitive to climate change, which is reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric mis- sions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2) on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline posi- tions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging multisource lake water levels with systematic biases being removed.
    [Show full text]
  • 2010 Commercial Space Transportation Forecasts
    2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS .
    [Show full text]
  • Algorithm Theoretical Basis Document (ATBD) for Land
    ICE, CLOUD, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products (ATL08) Contributions by Land/VEG SDT Team Members and ICESAt-2 Project Science Office (Amy Neuenschwander, Sorin Popescu, Ross Nelson, David Harding, Katherine Pitts, John Robbins, Dylan Pederson, and Ryan Sheridan) ATBD Document prepared by Amy Neuenschwander June 2018 Content reviewed: technical approach, assumptions, scientific soundness, maturity, scientific utility of the data product 21 Contents 1 INTRODUCTION 8 1.1. Background 9 1.2 Photon Counting Lidar 11 1.3 The ICESat-2 concept 12 1.4 Height Retrieval from ATLAS 16 1.5 Accuracy Expected from ATLAS 17 1.6 Additional Potential Height Errors from ATLAS 19 1.7 Dense Canopy Cases 20 1.8 Sparse Canopy Cases 20 2. ATL08: DATA PRODUCT 21 2.1 Subgroup: Land Parameters 23 2.1.1 Georeferenced_segment_number_beg 24 2.1.2 Georeferenced_segment_number_end 25 2.1.3 Segment_terrain_height_mean 25 2.1.4 Segment_terrain_height_med 25 2.1.5 Segment_terrain_height_min 25 2.1.6 Segment_terrain_height_max 26 2.1.7 Segment_terrain_height_mode 26 2.1.8 Segment_terrain_height_skew 26 2.1.9 Segment_number_terrain_photons 26 2.1.10 Segment height_interp 27 2.1.11 Segment h_te_std 27 2.1.12 Segment_terrain_height_uncertainty 27 2.1.13 Segment_terrain_slope 27 21 2.1.14 Segment number_of_photons 27 2.1.15 Segment_terrain_height_best_fit 28 2.2 Subgroup: Vegetation Parameters 28 2.2.1 Georeferenced_segment_number_beg 31 2.2.2 Georeferenced_segment_number_end 31 2.2.3
    [Show full text]
  • GLAS HDF Standard Data Product Specification Revision - November 01, 2012
    ICE, CLOUD, and Land Elevation Satellite (ICESat) Project GLAS_HDF Standard Data Product Specification Revision - November 01, 2012 SGT/Jeffrey Lee Cryospheric Sciences Laboratory Hydrospheric and Biospheric Processes NASA Goddard Space Flight Center Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration GLAS_HDF Standard Data Product Specification Revision - Table of Contents Table of Contents ............................................................................................... 1-1 List of Figures ..................................................................................................... 1-3 List of Tables ...................................................................................................... 1-3 1.0 Introduction ................................................................................................ 1-1 1.1 Identification of Document ...................................................................... 1-1 1.2 Scope ..................................................................................................... 1-1 1.3 Purpose and Objectives ......................................................................... 1-1 1.4 Acknowledgements ................................................................................ 1-1 1.5 Document Status and Schedule ............................................................. 1-2 1.6 Document Change History ..................................................................... 1-2 2.0 Related Documentation ............................................................................
    [Show full text]
  • Cloudsat-CALIPSO Launch
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CloudSat-CALIPSO Launch Press Kit April 2006 Media Contacts Erica Hupp Policy/Program (202) 358-1237 NASA Headquarters, Management [email protected] Washington Alan Buis CloudSat Mission (818) 354-0474 NASA Jet Propulsion Laboratory, [email protected] Pasadena, Calif. Emily Wilmsen Colorado Role - CloudSat (970) 491-2336 Colorado State University, [email protected] Fort Collins, Colo. Julie Simard Canada Role - CloudSat (450) 926-4370 Canadian Space Agency, [email protected] Saint-Hubert, Quebec, Canada Chris Rink CALIPSO Mission (757) 864-6786 NASA Langley Research Center, [email protected] Hampton, Va. Eliane Moreaux France Role - CALIPSO 011 33 5 61 27 33 44 Centre National d'Etudes [email protected] Spatiales, Toulouse, France George Diller Launch Operations (321) 867-2468 NASA Kennedy Space Center, [email protected] Fla. Contents General Release ......................................................................................................................... 3 Media Services Information ........................................................................................................ 5 Quick Facts ................................................................................................................................. 6 Mission Overview ....................................................................................................................... 7 CloudSat Satellite ....................................................................................................................
    [Show full text]
  • The Future of Canada's Space Sector
    The Future of Canada’s Space Sector An Engine of Innovation For Over Fifty Years September 2016 “Space is at the cutting edge of innovation.” Hon. Navdeep Bains, Minister of Innovation, Science and Economic Development Launch of Canada’s fourth recruitment campaign for Canadian Astronauts Canadian Aviation Museum -- Ottawa -- June 17, 2016 EXECUTIVE SUMMARY Canada has a 50-year history as a spacefaring nation. That history is part of what defines Canada as a globally important, advanced economy. That 50-year investment has also left a legacy of infrastructure, institutions and industry that generates significant socio-economic benefits and directly supports or enables government priorities across several departments, including National Defence, Environment & Climate Change, Fisheries & Oceans, In- digenous & Northern Affairs, Natural Resources, Transport, Public Safety and Innovation, Science & Economic De- velopment. Canada’s space sector is also a modern ecosystem of innovation that involves and inspires Canadians in government, academic institutions and private sector companies. The sector supports world-leading Canadian science, generates technological innovation and exports on a daily basis, and has been justifiably identified as an example of the kind of “innovation ecosystem” which the Innovation Agenda seeks to build and expand. It is, however, a sector that faces both significant opportunities and major challenges. Internationally, the industry is in the throes of a generational transformation that is seeing the rise of new players and whole new business models. This provides a host of new opportunities. Unfortunately, domestically, the combined forces of reduced funding and lack of investment certainty are depriving the space innovation engine of the fuel that it needs to respond to this dynamic environment and live up to its full potential.
    [Show full text]
  • 59864 Federal Register/Vol. 85, No. 185/Wednesday, September 23
    59864 Federal Register / Vol. 85, No. 185 / Wednesday, September 23, 2020 / Rules and Regulations FEDERAL COMMUNICATIONS C. Congressional Review Act II. Report and Order COMMISSION 2. The Commission has determined, A. Allocating FTEs 47 CFR Part 1 and the Administrator of the Office of 5. In the FY 2020 NPRM, the Information and Regulatory Affairs, Commission proposed that non-auctions [MD Docket No. 20–105; FCC 20–120; FRS Office of Management and Budget, funded FTEs will be classified as direct 17050] concurs that these rules are non-major only if in one of the four core bureaus, under the Congressional Review Act, 5 i.e., in the Wireline Competition Assessment and Collection of U.S.C. 804(2). The Commission will Bureau, the Wireless Regulatory Fees for Fiscal Year 2020 send a copy of this Report & Order to Telecommunications Bureau, the Media Congress and the Government Bureau, or the International Bureau. The AGENCY: Federal Communications indirect FTEs are from the following Commission. Accountability Office pursuant to 5 U.S.C. 801(a)(1)(A). bureaus and offices: Enforcement ACTION: Final rule. Bureau, Consumer and Governmental 3. In this Report and Order, we adopt Affairs Bureau, Public Safety and SUMMARY: In this document, the a schedule to collect the $339,000,000 Homeland Security Bureau, Chairman Commission revises its Schedule of in congressionally required regulatory and Commissioners’ offices, Office of Regulatory Fees to recover an amount of fees for fiscal year (FY) 2020. The the Managing Director, Office of General $339,000,000 that Congress has required regulatory fees for all payors are due in Counsel, Office of the Inspector General, the Commission to collect for fiscal year September 2020.
    [Show full text]
  • Britain Back in Space
    Spaceflight A British Interplanetary Society Publication Britain back in Space Vol 58 No 1 January 2016 £4.50 www.bis-space.com 1.indd 1 11/26/2015 8:30:59 AM 2.indd 2 11/26/2015 8:31:14 AM CONTENTS Editor: Published by the British Interplanetary Society David Baker, PhD, BSc, FBIS, FRHS Sub-editor: Volume 58 No. 1 January 2016 Ann Page 4-5 Peake on countdown – to the ISS and beyond Production Assistant: As British astronaut Tim Peake gets ready for his ride into space, Ben Jones Spaceflight reviews the build-up to this mission and examines the Spaceflight Promotion: possibilities that may unfold as a result of European contributions to Suszann Parry NASA’s Orion programme. Spaceflight Arthur C. Clarke House, 6-9 Ready to go! 27/29 South Lambeth Road, London, SW8 1SZ, England. What happens when Tim Peake arrives at the International Space Tel: +44 (0)20 7735 3160 Station, where can I watch it, listen to it, follow it, and what are the Fax: +44 (0)20 7582 7167 broadcasters doing about special programming? We provide the Email: [email protected] directory to a media frenzy! www.bis-space.com 16-17 BIS Technical Projects ADVERTISING Tel: +44 (0)1424 883401 Robin Brand has been busy gathering the latest information about Email: [email protected] studies, research projects and practical experiments now underway at DISTRIBUTION the BIS, the first in a periodic series of roundups. Spaceflight may be received worldwide by mail through membership of the British 18 Icarus Progress Report Interplanetary Society.
    [Show full text]
  • Icesat) Spacecraft Immediately Following Its Initial Mechanical Integration on June 18Th, 2002
    Goddard Space Flight Center Greenbelt, Maryland 20771 FS-2002-9-047-GSFC The Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and land Elevation Satellite (ICESat) spacecraft immediately following its initial mechanical integration on June 18th, 2002. Note that ICESat’s solar arrays have not yet been attached. Left – Gordon Casto, NASA/GSFC. Right – John Bishop, Mantech. Courtesy of Ball Aerospace & Technologies Corp. “Possible changes in the mass balance of the Antarctic and Greenland ice sheets are fundamental gaps in our understanding and are crucial to the quantification and refinement of sea-level forecasts.” —Sea-Level Change report, National Research Council (1990) “In light of…abrupt ice-sheet changes affecting global climate and sea level, enhanced emphasis on ice-sheet characterization over time is essential.” —Abrupt Climate Change report, National Research Council (2002) MISSION INTRODUCTION AND SCIENTIFIC RATIONALE Ice, Cloud and land Elevation Satellite (ICESat) Are the ice sheets that still blanket the Earth’s poles growing or shrinking? Will global sea level rise or fall? NASA’s Earth Science Enterprise (ESE) has developed the ICESat mission to provide answers to these and other questions — to help fulfill NASA’s mission to understand and protect our home planet. The primary goal of ICESat is to quantify ice sheet mass balance and understand how changes in the Earth's atmosphere and climate affect the polar ice masses and global sea level. ICESat will also measure global distributions of clouds and aerosols for studies of their effects on atmospheric processes and global change, as well as land topography, sea ice, and vegetation cover.
    [Show full text]
  • Federal Register/Vol. 86, No. 91/Thursday, May 13, 2021/Proposed Rules
    26262 Federal Register / Vol. 86, No. 91 / Thursday, May 13, 2021 / Proposed Rules FEDERAL COMMUNICATIONS BCPI, Inc., 45 L Street NE, Washington, shown or given to Commission staff COMMISSION DC 20554. Customers may contact BCPI, during ex parte meetings are deemed to Inc. via their website, http:// be written ex parte presentations and 47 CFR Part 1 www.bcpi.com, or call 1–800–378–3160. must be filed consistent with section [MD Docket Nos. 20–105; MD Docket Nos. This document is available in 1.1206(b) of the Commission’s rules. In 21–190; FCC 21–49; FRS 26021] alternative formats (computer diskette, proceedings governed by section 1.49(f) large print, audio record, and braille). of the Commission’s rules or for which Assessment and Collection of Persons with disabilities who need the Commission has made available a Regulatory Fees for Fiscal Year 2021 documents in these formats may contact method of electronic filing, written ex the FCC by email: [email protected] or parte presentations and memoranda AGENCY: Federal Communications phone: 202–418–0530 or TTY: 202–418– summarizing oral ex parte Commission. 0432. Effective March 19, 2020, and presentations, and all attachments ACTION: Notice of proposed rulemaking. until further notice, the Commission no thereto, must be filed through the longer accepts any hand or messenger electronic comment filing system SUMMARY: In this document, the Federal delivered filings. This is a temporary available for that proceeding, and must Communications Commission measure taken to help protect the health be filed in their native format (e.g., .doc, (Commission) seeks comment on and safety of individuals, and to .xml, .ppt, searchable .pdf).
    [Show full text]
  • Secretariat Distr.: General 11 October 2006
    United Nations ST/SG/SER.E/489 Secretariat Distr.: General 11 October 2006 Original: English Committee on the Peaceful Uses of Outer Space Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space Note verbale dated 16 March 2006 from the Permanent Mission of Canada to the United Nations (Vienna) addressed to the Secretary-General The Permanent Mission of Canada to the United Nations (Vienna) presents its compliments to the Secretary-General of the United Nations and, in accordance with article IV of the Convention on Registration of Objects Launched into Outer Space (General Assembly resolution 3235 (XXIX), annex), has the honour to transmit launch information and technical data concerning Canadian space objects MSAT-1, Nimiq-1, Anik F-1, Canadarm-2, MBS, Nimiq-2, MOST, CanX-1, SciSat and Anik F-2 (see annex). V.06-57629 (E) 271006 271006 *0657629* ST/SG/SER.E/489 Annex Registration data for Canadian space objects* 1. MSAT-1 Names of Launching States: Canada France Designator: MSAT-1 Date and territory or location 20 April 1996 of launch: Kourou, French Guiana Launch vehicle: Ariane 4 Orbital parameters Nodal period: Geostationary Earth orbit Inclination: Controlled to zero ± 0.05 degrees Apogee: Kept between 15 kilometres and 30 kilometres above the synchronous radius Perigee: Kept between 15 kilometres and 30 kilometres below the synchronous radius Longitude: 106.5 degrees West Frequencies and transmitter power: Uplink: 1631.5-1660.5 MHz Downlink: 1530-1559 MHz Uplink: 13.0-13.15 GHz and 13.2-13.25 GHz Downlink: 10.75-10.95 GHz Purpose: Mobile communications—voice and data Operating entity: Mobile Satellite Ventures (Canada) Inc.
    [Show full text]