Expanding the Clinical, Allelic, and Locus Heterogeneity of Retinal Dystrophies

Total Page:16

File Type:pdf, Size:1020Kb

Expanding the Clinical, Allelic, and Locus Heterogeneity of Retinal Dystrophies ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies Nisha Patel, PhD1, Mohammed A. Aldahmesh, PhD1, Hisham Alkuraya, MD2,3, Shamsa Anazi, MSc1, Hadeel Alsharif, BSc1, Arif O. Khan, MD1,4, Asma Sunker, BSc1, Saleh Al-mohsen, MD5, Emad B. Abboud, MD6, Sawsan R. Nowilaty, MD6, Mohammed Alowain, MD7, Hamad Al-Zaidan, MD7, Bandar Al-Saud, MD5, Ali Alasmari, MD8, Ghada M.H. Abdel-Salam, MD9, Mohamed Abouelhoda, PhD1,10, Firdous M. Abdulwahab, BSc1, Niema Ibrahim, BSc1, Ewa Naim, BPharm1,10, Banan Al-Younes, MSc1,10, Abeer E. AlMostafa, BSc1,10, Abdulelah AlIssa, BSc1,10, Mais Hashem, BSc1, Olga Buzovetsky, PhD11, Yong Xiong, PhD11, Dorota Monies, PhD1,10, Nada Altassan, PhD1,10, Ranad Shaheen, PhD1, Selwa A.F. Al-Hazzaa, MD12, and Fowzan S. Alkuraya, MD1,13 Purpose: Retinal dystrophies (RD) are heterogeneous hereditary the likely candidate as AGBL5 and CDH16, respectively. We also disorders of the retina that are usually progressive in nature. The aim performed exome sequencing on negative syndromic RD cases of this study was to clinically and molecularly characterize a large and identified a novel homozygous truncating mutation in GNS in cohort of RD patients. a family with the novel combination of mucopolysaccharidosis and RD. Moreover, we identified a homozygous truncating mutation in Methods: We have developed a next-generation sequencing assay DNAJC17 in a family with an apparently novel syndrome of retinitis that allows known RD genes to be sequenced simultaneously. We also pigmentosa and hypogammaglobulinemia. performed mapping studies and exome sequencing on familial and on syndromic RD patients who tested negative on the panel. Conclusion: Our study expands the clinical and allelic spectrum of known RD genes, and reveals AGBL5, CDH16, and DNAJC17 as Results: Our panel identified the likely causal mutation in novel disease candidates. >60% of the 292 RD families tested. Mapping studies on all 162 familial RD patients who tested negative on the panel identi- Genet Med advance online publication 10 September 2015 fied two novel disease loci on Chr2:25,550,180-28,794,007 and ­Chr16:59,225,000-72,511,000. Whole-exome sequencing revealed Key Words: ciliopathy; exome; gene panel INTRODUCTION of rods, resulting in the classical triad of reduced peripheral The human retina plays a critical role in vision by converting vision (tunnel vision), night blindness (nyctalopia), and char- light energy in the visible range to electrical signals through acteristic changes in peripheral retina that can be detected by phototransduction in photoreceptors. Photoreceptors exist in clinical examination.1 Cone dystrophies, however, can pres- two morphologically and functionally distinct forms—cones ent with reduced central vision, scotoma, photophobia, and and rods—which are respectively responsible for photopic macular lesions detectable by fundoscopy. For reasons that are (daylight-adapted) and scotopic (dark-adapted) vision. The not fully understood, death of one type of photoreceptor is term “retinal dystrophy” (RD) is used to describe a hetero- often accompanied by death of the other type such that it can geneous group of hereditary disorders in which the loss of be difficult to determine the subtype of RD based on clinical photoreceptor function results in progressive visual impair- retinal examination in advanced stages, which constitutes a ment. The clinical variability of RD is driven primarily by the phenotyping challenge. distribution of the defect. Retinitis pigmentosa, for instance, is The genetic heterogeneity of RD is remarkable, with 232 dis- the most common RD and is characterized by progressive loss ease genes listed in RetNet as of February 2015 that span the The first two authors contributed equally to this work. 1Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; 2Department of Ophthalmology, College of Medicine, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia; 3Department of Ophthalmology, Specialized Medical Centre Hospital, Riyadh, Saudi Arabia; 4Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; 5Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; 6Vitreo-retinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; 7Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; 8Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia; 9Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt; 10Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia; 11Department of Structural Biology, College of Medicine, Yale University, New Haven, Connecticut, USA; 12Department of Ophthalmology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; 13Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. Correspondence: Fowzan S. Alkuraya ([email protected]) Submitted 18 May 2015; accepted 4 August 2015; advance online publication 10 September 2015. doi:10.1038/gim.2015.127 554 Volume 18 | Number 6 | June 2016 | GeneticS in medicine Expanding the heterogeneity of retinal dystrophies | PATEL et al ORIGINAL RESEARCH ARTICLE entire spectrum of Mendelian (autosomal recessive, autosomal Vision loss panel assay dominant, and X-linked) and non-Mendelian (mitochondrial This assay was part of a comprehensive “Mendeliome” assay and, very rarely, digenic). The study of RD genetics has greatly in which all established disease genes in OMIM as of August improved our understanding of the molecular biology of vision.2 2013 were divided into 13 clinically themed partially over- Genes that encode components of the connecting cilium (a mod- lapping gene panels, which is described in detail elsewhere.14 ified primary cilium that connects the outer and inner segments One of these panels is the “Vision Panel,” which included 322 of photoreceptors) are among the most commonly mutated genes known to cause Mendelian eye diseases, including RD. genes in RD, but genes encoding components of phototransduc- The panel was used to analyze the entire study cohort. Briefly, tions, lipid metabolism, ion channels, extracellular matrix, retina a next-generation multiplexing assay was developed whereby development, intermediary metabolism, cytoskeleton, and RNA the OMIM database was manually curated for genes with con- splicing are also known to be mutated in RD patients.3 Clinically, firmed causal links to diseases. The resulting list of ~3,000 the determination of the underlying mutation in RD is of imme- genes was included in 13 clinically themed panels, includ- diate translational benefit in terms of reproductive planning and, ing the Vision Panel used in this study. Genes were amplified more recently, choosing eligible patients for gene therapy for a using the AmpliSeq HiFi mix and proprietary primer design small but growing number of RD disease genes.4 (Thermo Fisher, Carlsbad, CA), followed by sequencing on the Despite its conspicuous basic and translational benefits, the Ion Proton platform following the manufacturer’s protocol. For study of RD genetics faces several important challenges. The the purpose of this article, we describe the results of the Vision marked locus and allelic heterogeneity of RD make it difficult to Panel only as they pertain to the RD cohort. The variant filter- identify the causal mutation in patients, which is further com- ing pipeline using the Saudi Human Genome is described else- pounded by the inadequate genotype/phenotype correlation.5 where.14 Briefly, only runs of high quality were aligned to the Some RD disease genes are known to underlie more than reference hg19 sequence and processed for variant calling using one clinically distinct subtype. In addition, the current list of the Torrent Suite Variant Caller program. In the subsequent RD disease genes is incomplete, so a significant proportion step, the variants were annotated using public-knowledge data- of patients will remain undiagnosed molecularly even if they bases available in the Annovar package and other commercial are screened for mutations in all these genes.6 Massively par- data sets such as the Human Gene Mutation Database, as well allel sequencing (also known as next-generation sequencing) as in-house databases comprising collections of disease-causing has ushered in a new era in molecular diagnostics by making variants. Variants that are less likely to play a functional role it feasible to sequence whole genomes, whole exomes, or large (intronic and synonymous), those with minor allele frequency panels of selected genes. This technology is particularly suited >1% and those with low base quality (using a Phred-like score for such a genetically and clinically heterogeneous condition produced by the Torrent Suite base caller) were excluded. The as RD, and this has been demonstrated by several studies.7–13 few remaining variants were then analyzed based on relevance In this study, we describe the application of a next-generation of gene to phenotype, zygosity (when indicated), and SIFT, sequencing-based gene panel strategy to study a very large PolyPhen, and combined annotation-dependent depletion cohort of RD patients in the diagnostic phase. In the
Recommended publications
  • Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
    NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants.
    [Show full text]
  • Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity Received: 11 November 2016 Audrey E
    www.nature.com/scientificreports OPEN Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity Received: 11 November 2016 Audrey E. Hendricks1,2, Elena G. Bochukova3,4, Gaëlle Marenne1, Julia M. Keogh3, Neli Accepted: 10 April 2017 Atanassova3, Rebecca Bounds3, Eleanor Wheeler1, Vanisha Mistry3, Elana Henning3, Published: xx xx xxxx Understanding Society Scientific Group*, Antje Körner5,6, Dawn Muddyman1, Shane McCarthy1, Anke Hinney7, Johannes Hebebrand7, Robert A. Scott8, Claudia Langenberg8, Nick J. Wareham8, Praveen Surendran9, Joanna M. Howson9, Adam S. Butterworth9,10, John Danesh1,9,10, EPIC-CVD Consortium*, Børge G Nordestgaard11,12, Sune F Nielsen11,12, Shoaib Afzal11,12, SofiaPa padia3, SofieAshford 3, Sumedha Garg3, Glenn L. Millhauser13, Rafael I. Palomino13, Alexandra Kwasniewska3, Ioanna Tachmazidou1, Stephen O’Rahilly3, Eleftheria Zeggini1, UK10K Consortium*, Inês Barroso1,3 & I. Sadaf Farooqi3 Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants inBBS1 , BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10−3), highlighting the challenges of testing rare variant associations and the need for very large sample sizes.
    [Show full text]
  • European School of Genetic Medicine Eye Genetics
    European School of Genetic Medicine th 4 Course in Eye Genetics Bertinoro, Italy, September 27-29, 2015 Bertinoro University Residential Centre Via Frangipane, 6 – Bertinoro www.ceub.it Course Directors: R. Allikmets (Columbia University, New York) A. Ciardella (U.O. Oftalmologia, Policlinico Sant’ Orsola, Bologna) B. P. Leroy (Ghent University, Ghent) M. Seri (U.O Genetica Medica, Bologna). th 4 Course in Eye Genetics Bertinoro, Italy, September 27-29, 2015 CONTENTS PROGRAMME 3 ABSTRACTS OF LECTURES 6 ABSTRACTS OF STUDENTS POSTERS 26 STUDENTS WHO IS WHO 39 FACULTY WHO IS WHO 41 2 4TH COURSE IN EYE GENETICS Bertinoro University Residential Centre Bertinoro, Italy, September 27-29, 2015 Arrival day: Saturday, September 26th September 27 8:30 - 8:40 Welcome 8:40 - 9:10 History of Medical Genetics Giovanni Romeo 9:15 - 10:00 2 parallel talks: (40 min + 5 min discussion) Garrison Room 1. Overview of clinical ophthalmology for basic scientists Antonio Ciardella Jacopo da Bertinoro Room 2. Overview of basic medical genetics for ophthalmologists Bart Leroy 10:05 - 11:35 2 talks (40 min + 5 min discussion) 3. Stargardt disease, the complex simple retinal disorder Rando Allikmets 4. Overview of inherited corneal disorders Graeme Black 11:35 - 12:00 Break 12:00 - 13:30 2 talks (40 min + 5 min discussion) 1. Molecular basis of non-syndromic and syndromic retinal and vitreoretinal diseases Wolfgang Berger 2. Introduction to next-generation sequencing for eye diseases Lonneke Haer-Wigman 13:30 - 14:30 Lunch 14:30 - 16:15 3 parallel workshops
    [Show full text]
  • Rod-Cone Dystrophy Associated with the Gly167asp Variant in PRPH2
    Rod-cone dystrophy associated with the Gly167Asp variant in PRPH2 Rola Ba-Abbad, FRCS, PhD1,2, Anthony G. Robson, PhD1,2, Becky MacPhee, BSc2, Andrew R. Webster, MD(Res), FRCOpth1,2, Michel Michaelides, MD(Res), FRCOphth 1,2 1. UCL Institute of Ophthalmology, University College London, London, UK 2. Moorfields Eye Hospital, London, UK Declaration of interest statement: the authors report no conflict of interest. Corresponding Author: Professor Michel Michaelides, MD(Res), FRCOphth UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom Email: [email protected] Phone number: +44 (0) 20 7608 6800 Peripherin 2-associated retinopathies are phenotypically heterogenous and can present as autosomal dominant retinitis pigmentosa, cone-rod dystrophy, various forms of macular and pattern dystrophy, or recessive retinopathy1,2. We report a case of rod-cone dystrophy associated with the variant c.500G>A, p.(Gly167Asp) in PRPH2 (OMIM 179605), which was previously reported to cause autosomal dominant butterfly-shaped pigment dystrophy of the fovea in a three-generation pedigree (MIM 169150)3. A 66-year old British woman of European ancestry was referred to the inherited retinal disorders clinic with bilateral pigmentary retinopathy, and a 5-year history of nyctalopia. There were no knowingly affected family members; her late father and mother had normal vision in their sixties and eighties respectively, and the patient’s two children had no symptoms in their third decade of life. Previously, she underwent laser refractive surgery for myopia, bilateral cataract extraction and laser posterior capsulotomy. On examination, the Snellen visual acuity was 20/30 in the right eye, and 20/80 in the left eye; and color vision (Ishihara plates) was normal bilaterally.
    [Show full text]
  • Loss of C. Elegans BBS-7 and BBS-8 Protein Function Results in Cilia Defects and Compromised Intraflagellar Transport
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport Oliver E. Blacque,1 Michael J. Reardon,2 Chunmei Li,1 Jonathan McCarthy,1 Moe R. Mahjoub,3 Stephen J. Ansley,4 Jose L. Badano,4 Allan K. Mah,1 Philip L. Beales,6 William S. Davidson,1 Robert C. Johnsen,1 Mark Audeh,2 Ronald H.A. Plasterk,7 David L. Baillie,1 Nicholas Katsanis,4,5 Lynne M. Quarmby,3 Stephen R. Wicks,2 and Michel R. Leroux1,8 1Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada; 2Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA; 3Department of Biological Sciences, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada; 4Institute of Genetic Medicine and 5Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland 21287, USA; 6Molecular Medicine Unit, Institute of Child Health, University College London, London WC1 1EH, UK; 7The Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands Bardet-Biedl syndrome (BBS) is a genetically heterogeneous developmental disorder whose molecular basis is largely unknown. Here, we show that mutations in the Caenorhabditis elegans bbs-7 and bbs-8 genes cause structural and functional defects in cilia. C. elegans BBS proteins localize predominantly at the base of cilia, and like proteins involved in intraflagellar transport (IFT), a process necessary for cilia biogenesis and maintenance, move bidirectionally along the ciliary axoneme. Importantly, we demonstrate that BBS-7 and BBS-8 are required for the normal localization/motility of the IFT proteins OSM-5/Polaris and CHE-11, and to a notably lesser extent, CHE-2.
    [Show full text]
  • Treatment Potential for LCA5-Associated Leber Congenital Amaurosis
    Retina Treatment Potential for LCA5-Associated Leber Congenital Amaurosis Katherine E. Uyhazi,1,2 Puya Aravand,1 Brent A. Bell,1 Zhangyong Wei,1 Lanfranco Leo,1 Leona W. Serrano,2 Denise J. Pearson,1,2 Ivan Shpylchak,1 Jennifer Pham,1 Vidyullatha Vasireddy,1 Jean Bennett,1 and Tomas S. Aleman1,2 1Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA 2Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA Correspondence: Tomas S. Aleman, PURPOSE. To determine the therapeutic window for gene augmentation for Leber congen- Perelman Center for Advanced ital amaurosis (LCA) associated with mutations in LCA5. Medicine, University of Pennsylvania, 3400 Civic Center METHODS. Five patients (ages 6–31) with LCA and biallelic LCA5 mutations underwent Blvd, Philadelphia, PA 19104, USA; an ophthalmic examination including optical coherence tomography (SD-OCT), full-field [email protected]. stimulus testing (FST), and pupillometry. The time course of photoreceptor degeneration in the Lca5gt/gt mouse model and the efficacy of subretinal gene augmentation therapy Received: November 19, 2019 with AAV8-hLCA5 delivered at postnatal day 5 (P5) (early, n = 11 eyes), P15 (mid, n = 14), Accepted: March 16, 2020 = Published: May 19, 2020 and P30 (late, n 13) were assessed using SD-OCT, histologic study, electroretinography (ERG), and pupillometry. Comparisons were made with the human disease. Citation: Uyhazi KE, Aravand P, Bell BA, et al. Treatment potential for RESULTS. Patients with LCA5-LCA showed a maculopathy with detectable outer nuclear LCA5-associated Leber congenital layer (ONL) in the pericentral retina and at least 4 log units of dark-adapted sensitivity amaurosis.
    [Show full text]
  • DJO Macular Dystrophy in a Post LASIK Patient
    DJO Vol. 30, No. 3, January-March 2020 Case Report Macular Dystrophy in a Post LASIK Patient Sanjana Vatsa, Shana Sood Dr. Agarwal Eye Hospital, Chennai, Tamil Nadu, India LASIK (Laser Assisted Insitu keratomileusis) is the most commonly performed refractive surgery worldwide. A detailed pre operative and post operative evaluation of the anterior and posterior segment is a must. A 35 year old male patient with a history of LASIK surgery done 13 years back presented to us with complaint of painless, progressive diminution of vision in both eyes from past Abstract 2 years. Dilated retinal examination showed bulls eye maculopathy in both eyes. Macular OCT showed gross reduction in central foveal thickness. ERG showed marked reduction in photopic responses suggestive of a cone dystrophy. Treatment aims at alleviating the symptoms and use of low vision aids. Genetic counselling may be of benefit for affected individuals and their families. Delhi J Ophthalmol 2020;30;60-62; Doi http://dx.doi.org/10.7869/djo.529 Keywords: LASIK, Bulls eye maculopathy, cone dystrophy, genetic counselling. Introduction LASIK is the most popular and commonly performed refractive surgery worldwide.1 Along with anterior segment, a detailed evaluation of the posterior segment is a must on follow up visits to rule out any retinal lesions such as degenerations, dystrophies, maculopathy etc; as these can occur irrespective of any procedure performed. Case Report A 35 year old male patient came to us with a history of LASIK surgery done 13 years back in both eyes for a power of -7.0D sphere. Patient was comfortable with his vision after surgery and had no complaints for 11 years, after which he noticed blurring of vision in both eyes (more in the left eye).
    [Show full text]
  • Weight Patterns and Genetics in a Rare Obesity Syndrome
    Received: 22 May 2020 Accepted: 30 June 2020 DOI: 10.1111/ijpo.12703 ORIGINAL RESEARCH Bardet-Biedl syndrome: Weight patterns and genetics in a rare obesity syndrome Jeremy Pomeroy1 | Anthony D. Krentz2 | Jesse G. Richardson1 | Richard L. Berg1 | Jeffrey J. VanWormer1 | Robert M. Haws1,3 1Clinical Research Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin Summary 2Prevention Genetics, Marshfield, Wisconsin Background: Bardet-Biedl syndrome (BBS) is a rare genetic disorder that severely 3Department of Pediatrics, Marshfield Clinic inhibits primary cilia function. BBS is typified by obesity in adulthood, but pediatric Health System, Marshfield, Wisconsin weight patterns, and thus optimal periods of intervention, are poorly understood. Correspondence Objectives: To examine body mass differences by age, gender, and genotype in chil- Jeremy Pomeroy, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield, WI dren and adolescents with BBS. 54449. Methods: We utilized the largest international registry of BBS phenotypes. Anthro- Email: [email protected] pometric and genetic data were obtained from medical records or participant/family interviews. Participants were stratified by age and sex categories. Genotype and obe- sity phenotype were investigated in a subset of participants with available data. Results: Height and weight measurements were available for 552 unique individuals with BBS. The majority of birth weights were in the normal range, but rates of over- weight or obesity rapidly increased in early childhood, exceeding 90% after age 5. Weight z-scores in groups >2 years were above 2.0, while height z-scores approached 1.0, but were close to 0.0 in adolescents. Relative to those with the BBS10 genotype, the BBS1 cohort had a lower BMI z-score in the 2-5 and 6-11 age groups, with similar BMI z-scores thereafter.
    [Show full text]
  • [Frontiers in Bioscience 13, 2633-2652, January 1, 2008] 2633 Intraflagellar Transport: from Molecular Characterisation to Mech
    [Frontiers in Bioscience 13, 2633-2652, January 1, 2008] Intraflagellar transport: from molecular characterisation to mechanism Oliver E. Blacque1, Sebiha Cevik1, Oktay Ismail Kaplan1 1School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Scope of Review 2.2. Overview of cilia and flagella 2.2.1. Two classes of cilia: motile and non-motile 2.2.2. Cilium structure 2.2.3. The ‘ciliome’ 2.3. Discovery of IFT 2.4. IFT in outline 3. The IFT machinery: lessons from unicellular chlamydomonas 3.1. Kinesin 2: the anterograde IFT motor 3.2. IFT-dynein: the retrograde motor 3.3. The IFT particle 3.3.1. IFT particle complexes A and B are functionally distinct 4. IFT in metazoans: the C. elegans model 4.1. Structure/function of C. elegans sensory cilia 4.2. Not one, but two kinesin 2 motors drive C. elegans anterograde IFT 4.3. Novel IFT genes 4.4. Regulation of C. elegans anterograde IFT 4.4.1. bbs gene function coordinates kinesin 2 motor association 4.4.2. dyf-5 regulates the docking/undocking of kinesin 2 motors 5. Vertebrate IFT 5.1. IFT and disease 5.2. Investigation of mammalian IFT 6. IFT and cilium-based signalling 6.1. IFT and sonic hedgehog (Shh) signalling 6.2. IFT and PDGF-AA signalling 6.3. IFT directly mediates Chlamydomonas signalling during mating 7. IFT Cargo 8. IFT and the Cell cycle 9. Mechanism of IFT: a current model 10. Perspective 11.
    [Show full text]
  • Genotype-Phenotype Correlation for Leber Congenital Amaurosis in Northern Pakistan
    OPHTHALMIC MOLECULAR GENETICS Genotype-Phenotype Correlation for Leber Congenital Amaurosis in Northern Pakistan Martin McKibbin, FRCOphth; Manir Ali, PhD; Moin D. Mohamed, FRCS; Adam P. Booth, FRCOphth; Fiona Bishop, FRCOphth; Bishwanath Pal, FRCOphth; Kelly Springell, BSc; Yasmin Raashid, FRCOG; Hussain Jafri, MBA; Chris F. Inglehearn, PhD Objectives: To report the genetic basis of Leber con- in predicting the genotype. Many of the phenotypic vari- genital amaurosis (LCA) in northern Pakistan and to de- ables became more prevalent with increasing age. scribe the phenotype. Conclusions: Leber congenital amaurosis in northern Methods: DNA from 14 families was analyzed using single- Pakistan is genetically heterogeneous. Mutations in RP- nucleotide polymorphism and microsatellite genotyping GRIP1, AIPL1, and LCA5 accounted for disease in 10 of and direct sequencing to determine the genes and muta- the 14 families. This study illustrates the differences in tions involved. The history and examination findings from phenotype, for both the anterior and posterior seg- 64 affected individuals were analyzed to show genotype- ments, seen between patients with identical or different phenotype correlation and phenotypic progression. mutations in the LCA genes and also suggests that at least some of the phenotypic variation is age dependent. Results: Homozygous mutations were found in RPGRIP1 (4 families), AIPL1 and LCA5 (3 families each), and RPE65, Clinical Relevance: The LCA phenotype, especially one CRB1, and TULP1 (1 family each). Six of the mutations including different generations in the same family, may are novel. An additional family demonstrated linkage to be used to refine a molecular diagnostic strategy. the LCA9 locus. Visual acuity, severe keratoconus, cata- ract, and macular atrophy were the most helpful features Arch Ophthalmol.
    [Show full text]
  • Inhibition of Neural Crest Migration Underlies Craniofacial Dysmorphology and Hirschsprung's Disease in Bardet–Biedl Syndrom
    Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet–Biedl syndrome Jonathan L. Tobin*, Matt Di Franco†, Erica Eichers‡, Helen May-Simera*, Monica Garcia‡, Jiong Yan‡, Robyn Quinlan*, Monica J. Justice‡, Raoul C. Hennekam§¶, James Briscoeʈ, Masazumi Tada**, Roberto Mayor**, Alan J. Burns††, James R. Lupski‡, Peter Hammond*†, and Philip L. Beales*‡‡ *Molecular Medicine Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; †Biomedical Informatics Unit, UCL Eastman Dental Institute for Oral Health Care Sciences, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom; ‡Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; ʈDevelopmental Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom; **Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; ††Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; §Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; and ¶Department of Pediatrics, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands Edited by Kathryn V. Anderson, Sloan–Kettering Institute, New York, NY, and approved March 6, 2008 (received for review July 30, 2007) Facial recognition is central to the diagnosis of many syndromes, oral ectoderm is essential for the formation of most facial structures and craniofacial patterns may reflect common etiologies. In the (12). Shh-deficient mice have severe loss of craniofacial bones, and, pleiotropic Bardet–Biedl syndrome (BBS), a primary ciliopathy with in humans, SHH mutations cause midline CF defects with holo- intraflagellar transport dysfunction, patients have a characteristic prosencephaly (HPE) (12).
    [Show full text]
  • Download for Mobile
    Pediatrics Research International Journal Vol. 2015 (2015), Article ID 935983, 103 minipages. DOI:10.5171/2015.935983 www.ibimapublishing.com Copyright © 2015. Alba Faus-Pérez, Amparo Sanchis-Calvo and Pilar Codoñer-Franch. Distributed under Creative Commons CC-BY 4.0 Research Article Ciliopathies: an Update Authors Alba Faus-Pérez 1, Amparo Sanchis-Calvo 1,2 and Pilar Codoñer- Franch 1,3 1 Department of Pediatrics, Dr. Peset University Hospital, Valencia, 2 CIBER de Enfermedades raras, Madrid, Spain 3 Departments of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain Received date: 18 April 2014 Accepted date: 31 July 2014 Published date: 4 December 2015 Academic Editor: Michael David Shields Cite this Article as : Alba Faus-Pérez, Amparo Sanchis-Calvo and Pilar Codoñer-Franch (2015), " Ciliopathies: an Update", Pediatrics Research International Journal, Vol. 2015 (2015), Article ID 935983, DOI: 10.5171/2015.935983 Abstract Cilia are hair-like organelles that extend from the surface of almost all human cells. Nine doublet microtubule pairs make up the core of each cilium, known as the axoneme. Cilia are classified as motile or immotile; non motile or primary cilia are involved in sensing the extracellular environment. These organelles mediate perception of chemo-, mechano- and osmosensations that are then transmitted into the cell via signaling pathways. They also play a crucial role in cellular functions including planar cell polarity, cell division, proliferation and apoptosis. Because of cilia are located on almost all polarized human cell types, cilia-related disorders, can affect many organs and systems. The ciliopathies comprise a group of genetically heterogeneous clinical entities due to the molecular complexity of the ciliary axoneme.
    [Show full text]