The Ciliopathy Gene Nphp-2 Functions in Multiple Gene Networks and Regulates

Total Page:16

File Type:pdf, Size:1020Kb

The Ciliopathy Gene Nphp-2 Functions in Multiple Gene Networks and Regulates THE CILIOPATHY GENE NPHP-2 FUNCTIONS IN MULTIPLE GENE NETWORKS AND REGULATES CILIOGENESIS IN C. ELEGANS By SIMON ROBERT FREDERICK WARBURTON-PITT A dissertation submitted to the Graduate School – New Brunswick and The Graduate School of Biomedical Sciences Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Molecular Genetics and Microbiology Written under the direction of Maureen M. Barr, PhD And approved by New Brunswick, New Jersey January, 2015 © 2015 Simon Warburton-Pitt ALL RIGHTS RESERVED ABSTRACT OF THE DISSERTATION The ciliopathy gene nphp-2 functions in multiple gene networks and regulates ciliogenesis in C. elegans By SIMON ROBERT FREDERICK WARBURTON-PITT Dissertation Director: Maureen Barr Cilia are hair-like organelles that function as cellular antennae. Cilia are conserved across eukaryotes, and play a vital role in many biological processes including signal transduction, signal cascades, cell-cell signaling, cell orientation, cell-cell adhesion, motility, interorganismal communication, building extracellular matrix, and inducing fluid flow. In humans, cilia are present in a majority of tissue types, and cilia dysfunction can lead to a range of syndromic ciliopathies, including nephronopthisis (NPHP) and Meckel Syndrome (MKS). Cilia have a microtubule backbone, the axoneme, and are composed of multiple subcompartments, each with a specific function and composition: the transition zone (TZ) anchoring to the axoneme to the membrane, the doublet region extending from the TZ, and in some cilia types, the singlet region extending from the doublet region. The nematode C. elegans is a well-established model of cilia biology, and possesses cilia at the distal end of sensory dendrites. My work focused on exploring the role and function of nphp-2, the C. elegans ortholog of mammalian INVS/NPHP2, and the relationships between nphp-2, the TZ, and the doublet region. I found that TZ-associated genes can be grouped into ii two redundant genetic modules that interact with nphp-2 cell-type specific manner to regulate ciliogenesis and cilia placement. I also found that, like its ortholog Inversin (encoded by INVS), NPHP-2 localizes to the eponymous Inversin compartment, a subportion of the doublet region. nphp-2 genetically interacts with other doublet region-associated genes; like TZ-associated genes, these interactions can also be organized into two redundant genetic modules. The doublet region modules regulate many aspects of cilia biology, including ciliogenesis, cilia placement, microtubule patterning, tubulin post-translational modification, and doublet region composition. Additionally, I characterized a positive and a negative regulator of the doublet region modules. Together, these results help knit together data from mammalian models and C. elegans, and build a genetic framework between nphp-2 and genes from multiple ciliary compartments, pulling together what were disparate threads to lead us to a better understanding of cilia biology. iii Acknowledgments This thesis was a very long time coming, and I’d like to thank everyone who supported me during these years. Thanks to my funding sources NIH and Waksman Institute for generously funding my research. Thank you to my colleagues Jinghua Hu, Ollie Blacque, Corey Williams, and Michel Leroux for reagents, advice, and good conversation at meetings. A big thanks to my thesis committee for making time for me and helping my project through some sticky spots. A huge thanks to the Barr Lab past and present, which has made coming to work a fun and amazing experience; you guys are such an amazing group of people and I’ve learned and changed (hopefully for the better!) from knowing all of you. I also apologize for going on a bit too much about Jurassic Park, which none of you are likely ever going to want to see again. Thanks to my parents for never giving up on asking me when I was going to graduate, Julie for (PSST) never, ever letting it get too real, Brent for being a mathematical supergenius who introduced me to Elvira and drag queens, Becky for making me a Hippie, Natalia for endlessly (endless? :P) amazing conversation and hikes, dogs for existing, and Devin for being Devin. Also thanks to Square Enix, Namco, Bioware, Sony, Nintendo, Microsoft, the Vicar, Eddy and Patsy, Hyacinth, The Doctor, Matt Groening, Hideo Kojima, Stephen Baxter, Madonna, Lady Gaga, Exes, etc etc for keeping me sane and entertained. And thank you to Maureen, without whom none of this would ever have happened, who never ran out of patience for my antics, who trusts me, and who let me be my own scientist. Also, Devin again. iv Table of Contents Abstract Of The Dissertation ............................................................................................................ ii Acknowledgments........................................................................................................................... iv Table of Contents ............................................................................................................................. v Table of Figures ................................................................................................................................ x Table of Tables ............................................................................................................................... xii Chapter 1: Cilia Biology and the Inversin Compartment ................................................................. 1 1.1 – Introduction to cilia ............................................................................................................. 1 1.1.1 – Introduction ................................................................................................................. 1 1.1.2 – Abstract ........................................................................................................................ 1 1.2 – Brief Overview of Cilia Biology ............................................................................................ 2 1.2.1 – Cilia structure ............................................................................................................... 2 1.2.3 – The ciliary transition zone ............................................................................................ 8 1.2.4 – Ciliogenesis ................................................................................................................. 10 1.2.2 – Intraflagellar Transport .............................................................................................. 11 1.3 – Ciliopathies and cystic kidney disease .............................................................................. 13 1.4 – Characterizing the Inversin Compartment ........................................................................ 14 1.4.1 – Discovering a proximal ciliary compartment ............................................................. 14 1.4.2 – Defining the Proximal Cilium ...................................................................................... 16 1.4.3 – The Inversin Complex ................................................................................................. 17 1.4.4 – Establishing the Inv Compartment ............................................................................. 19 1.4.5 – Membrane Dynamics of the Inv Compartment ......................................................... 23 1.4.6 – Ultrastructure and microtubule dynamics ................................................................. 25 1.4.6.1 – Acetylation. ......................................................................................................... 26 1.4.6.2 – Glutamylation...................................................................................................... 27 1.5 – The Function of the Inversin Compartment ...................................................................... 29 1.5.1 – Signal Transduction and Amplification ...................................................................... 29 1.5.1.1 – Wnt signaling....................................................................................................... 29 1.5.1.2 – Hedgehog signaling. ............................................................................................ 32 1.5.1.3 – Other signaling pathways. ................................................................................... 33 v 1.5.2 – Ciliogenesis ................................................................................................................. 35 1.5.3 – Cilia Cycling ................................................................................................................ 35 1.5.4 – Cilia Length Regulation............................................................................................... 36 1.6 – Interactions between the InvC and other ciliary compartments ...................................... 38 1.6.1 – Interaction with the Transition Zone and Basal Body ................................................ 38 1.6.1.1 – Ciliogenesis. ......................................................................................................... 39 1.6.1.2 – Protein localization. ............................................................................................ 40 1.6.1.3 – Signaling pathways. ............................................................................................. 40 1.6.1.4 – Other TZ and InvC interactions. .........................................................................
Recommended publications
  • Constitutive Scaffolding of Multiple Wnt Enhanceosome Components By
    RESEARCH ARTICLE Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/ BCL9 Laurens M van Tienen, Juliusz Mieszczanek, Marc Fiedler, Trevor J Rutherford, Mariann Bienz* MRC Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract Wnt/b-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF- responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing b-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of b-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these b-catenin co-factors may coordinate Wnt and nuclear hormone responses. DOI: 10.7554/eLife.20882.001 *For correspondence: mb2@mrc- Introduction lmb.cam.ac.uk The Wnt/b-catenin signaling cascade is an ancient cell communication pathway that operates con- Competing interests: The text-dependent transcriptional switches to control animal development and tissue homeostasis authors declare that no (Cadigan and Nusse, 1997).
    [Show full text]
  • Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
    NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • VDAC1 Selectively Transfers Apoptotic Ca2&Plus; Signals to Mitochondria
    Cell Death and Differentiation (2012) 19, 267–273 & 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12 www.nature.com/cdd VDAC1 selectively transfers apoptotic Ca2 þ signals to mitochondria D De Stefani1, A Bononi2, A Romagnoli1, A Messina3, V De Pinto3, P Pinton2 and R Rizzuto*,1 Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca2 þ loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca2 þ signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP3 receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca2 þ signals to mitochondria in apoptosis. Cell Death and Differentiation (2012) 19, 267–273; doi:10.1038/cdd.2011.92; published online 1 July 2011 Voltage-dependent anion channels (VDACs), the most Mitochondrial [Ca2 þ ] is commonly regarded as an impor- abundant proteins of the outer mitochondrial membrane tant determinant in cell sensitivity to apoptotic stimuli.21 (OMM), mediate the exchange of ions and metabolites Indeed, mitochondrial Ca2 þ accumulation acts as a ‘priming between the cytoplasm and mitochondria, and are key factors signal’ sensitizing the organelle and promoting the release of in many cellular processes, ranging from metabolism regula- caspase cofactors, both in isolated mitochondria as well as in tion to cell death.
    [Show full text]
  • Mouse Cep104 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cep104 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Cep104 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cep104 gene (NCBI Reference Sequence: NM_177673 ; Ensembl: ENSMUSG00000039523 ) is located on Mouse chromosome 4. 22 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 22 (Transcript: ENSMUST00000047497). Exon 5~6 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Cep104 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-101G23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 15.41% of the coding region. The knockout of Exon 5~6 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 1291 bp, and the size of intron 6 for 3'-loxP site insertion: 1224 bp. The size of effective cKO region: ~1111 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 4 5 6 7 8 22 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Cep104 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • European School of Genetic Medicine Eye Genetics
    European School of Genetic Medicine th 4 Course in Eye Genetics Bertinoro, Italy, September 27-29, 2015 Bertinoro University Residential Centre Via Frangipane, 6 – Bertinoro www.ceub.it Course Directors: R. Allikmets (Columbia University, New York) A. Ciardella (U.O. Oftalmologia, Policlinico Sant’ Orsola, Bologna) B. P. Leroy (Ghent University, Ghent) M. Seri (U.O Genetica Medica, Bologna). th 4 Course in Eye Genetics Bertinoro, Italy, September 27-29, 2015 CONTENTS PROGRAMME 3 ABSTRACTS OF LECTURES 6 ABSTRACTS OF STUDENTS POSTERS 26 STUDENTS WHO IS WHO 39 FACULTY WHO IS WHO 41 2 4TH COURSE IN EYE GENETICS Bertinoro University Residential Centre Bertinoro, Italy, September 27-29, 2015 Arrival day: Saturday, September 26th September 27 8:30 - 8:40 Welcome 8:40 - 9:10 History of Medical Genetics Giovanni Romeo 9:15 - 10:00 2 parallel talks: (40 min + 5 min discussion) Garrison Room 1. Overview of clinical ophthalmology for basic scientists Antonio Ciardella Jacopo da Bertinoro Room 2. Overview of basic medical genetics for ophthalmologists Bart Leroy 10:05 - 11:35 2 talks (40 min + 5 min discussion) 3. Stargardt disease, the complex simple retinal disorder Rando Allikmets 4. Overview of inherited corneal disorders Graeme Black 11:35 - 12:00 Break 12:00 - 13:30 2 talks (40 min + 5 min discussion) 1. Molecular basis of non-syndromic and syndromic retinal and vitreoretinal diseases Wolfgang Berger 2. Introduction to next-generation sequencing for eye diseases Lonneke Haer-Wigman 13:30 - 14:30 Lunch 14:30 - 16:15 3 parallel workshops
    [Show full text]
  • Establishment of a Continuous Untransfected Human Corneal Endothelial Cell Line and Its Biocompatibility to Denuded Amniotic Membrane
    Molecular Vision 2011; 17:469-480 <http://www.molvis.org/molvis/v17/a54> © 2011 Molecular Vision Received 13 December 2010 | Accepted 8 February 2011 | Published 15 February 2011 Establishment of a continuous untransfected human corneal endothelial cell line and its biocompatibility to denuded amniotic membrane Tingjun Fan, Jun Zhao, Xiya Ma, Xiaohui Xu, Wenzhuo Zhao, Bin Xu Key Laboratory for Corneal Tissue Engineering, Ocean University of China, Qingdao,China Purpose: To establish an untransfected human corneal endothelial (HCE) cell line and characterize its biocompatibility to denuded amniotic membrane (dAM). Methods: Primary culture was initiated with a pure population of HCE cells in DMEM/F12 media (pH 7.2) containing 20% fetal bovine serum and various supplements. The established cell line was characterized by growth property, chromosome analysis, morphology recovery, tumorigenicity assay, and expression of marker proteins, cell-junction proteins, and membrane transport proteins. The biocompatibility of HCE cells to dAM was evaluated by light microscopy, alizarin red staining, immunofluorescence assay, and electron microscopy. Results: HCE cells proliferated to confluence 6 weeks later in primary culture and have been subcultured to passage 224 so far. A continuous untransfected HCE cell line with a population doubling time of 26.20 h at passage 101 has been established. Results of chromosome analysis, morphology, combined with the results of expression of marker protein, cell-junction protein and membrane transport protein, suggested that the cells retained HCE cell properties and potencies to form cell junctions and perform membrane transport. Furthermore, HCE cells, without any tumorigenicity, could form confluent cell sheets on dAMs. The single layer sheets that attached tightly to dAMs had similar morphology and structure to those of HCE in situ and had an average cell density of 3,413±111 cells/mm2.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Treatment Potential for LCA5-Associated Leber Congenital Amaurosis
    Retina Treatment Potential for LCA5-Associated Leber Congenital Amaurosis Katherine E. Uyhazi,1,2 Puya Aravand,1 Brent A. Bell,1 Zhangyong Wei,1 Lanfranco Leo,1 Leona W. Serrano,2 Denise J. Pearson,1,2 Ivan Shpylchak,1 Jennifer Pham,1 Vidyullatha Vasireddy,1 Jean Bennett,1 and Tomas S. Aleman1,2 1Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA 2Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA Correspondence: Tomas S. Aleman, PURPOSE. To determine the therapeutic window for gene augmentation for Leber congen- Perelman Center for Advanced ital amaurosis (LCA) associated with mutations in LCA5. Medicine, University of Pennsylvania, 3400 Civic Center METHODS. Five patients (ages 6–31) with LCA and biallelic LCA5 mutations underwent Blvd, Philadelphia, PA 19104, USA; an ophthalmic examination including optical coherence tomography (SD-OCT), full-field [email protected]. stimulus testing (FST), and pupillometry. The time course of photoreceptor degeneration in the Lca5gt/gt mouse model and the efficacy of subretinal gene augmentation therapy Received: November 19, 2019 with AAV8-hLCA5 delivered at postnatal day 5 (P5) (early, n = 11 eyes), P15 (mid, n = 14), Accepted: March 16, 2020 = Published: May 19, 2020 and P30 (late, n 13) were assessed using SD-OCT, histologic study, electroretinography (ERG), and pupillometry. Comparisons were made with the human disease. Citation: Uyhazi KE, Aravand P, Bell BA, et al. Treatment potential for RESULTS. Patients with LCA5-LCA showed a maculopathy with detectable outer nuclear LCA5-associated Leber congenital layer (ONL) in the pericentral retina and at least 4 log units of dark-adapted sensitivity amaurosis.
    [Show full text]
  • Investigations Into Neuronal Cilia Utilizing Mouse Models
    INVESTIGATIONS INTO NEURONAL CILIA UTILIZING MOUSE MODELS OF BARDET-BIEDL SYNDROME Dissertation Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Nicolas F. Berbari, BS ***** The Ohio State University 2008 Dissertation Committee: Approved by: Kirk Mykytyn, PhD, Adviser Virginia Sanders, PhD __________________________________________ Georgia Bishop, PhD Adviser Michael Robinson, PhD Integrated Biomedical Sciences Graduate Program ABSTRACT Cilia are hair-like microtubule based cellular appendages that extend 5-30 microns from the surface of most vertebrate cells. Since their initial discovery over a hundred years ago, cilia have been of interest to microbiologists and others studying the dynamics and physiological relevance of their motility. The more recent realization that immotile or primary cilia dysfunction is the basis of several human genetic disorders and diseases has brought the efforts of the biomedical research establishment to bear on this long overlooked and underappreciated organelle. Several human genetic disorders caused by cilia defects have been identified, and include Bardet-Biedl syndrome, Joubert syndrome, Meckel-Gruber syndrome, Alstrom syndrome and orofaciodigital syndrome. One theme of these disorders is their multitude of clinical features such as blindness, cystic kidneys, cognitive deficits and obesity. The fact that many of these cilia disorders present with several features may be due to the ubiquitous nature of the primary cilium and their unrecognized roles in most tissues and cell types. The lack of known function for most primary cilia is no more apparent than in the central nervous system. While it has been known for some time that neurons throughout the brain have primary cilia, their functions remain unknown.
    [Show full text]