Blueprint Genetics Ciliopathy Panel

Total Page:16

File Type:pdf, Size:1020Kb

Blueprint Genetics Ciliopathy Panel Ciliopathy Panel Test code: KI0701 Is a 107 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of Bardet-Biedl syndrome, Joubert syndrome, Meckel syndrome, nephronophthisis with or without retinal dystrophy, or complex ciliopathy phenotype. Isn’t ideal for a patient with primary ciliary dyskinesia or isomerism/heterotaxy. For patients with a suspicion of primary ciliary dyskinesia, Primary Ciliary Dyskinesia Panel is recommended. For patients with isomerism/heterotaxy, Heterotaxy and Situs Inversus Panel is recommended. About Ciliopathy Ciliopathies are a group of disorders resulting from either abnormal formation or function of cilia. Mutations in ciliary gene are known to cause single organ phenotypes, as well as complex syndromes. Ciliopathies have a broad range of phenotypes encompassing a number of different autosomal recessive, dominant and X-linked syndromes. As cilia are a component of almost all cells, ciliary dysfunction can manifest as a collection of features that include retinal degeneration, renal disease and brain malformations. Additional features may include congenital fibrocystic diseases of the liver and pancreas, diabetes, obesity and skeletal dysplasias. Ciliopathies can result from a mutation at a single locus in one patient while mutations affecting a number of different loci can, at the same time, can result in a similar phenotype in other patients. Ciliopathies can be classified according to whether there is aberrant function in an intact cilium or complete absence/loss of the mature cilium. The latter is the case with severe multi-organ phenotypes. Availability 4 weeks Gene Set Description Genes in the Ciliopathy Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ACVR2B Heterotaxy, visceral, 4, autosomal AD 1 2 AHI1 Joubert syndrome AR 62 93 ALMS1* Alström syndrome AR 197 302 ANKS6 Nephronophthisis AR 9 12 ARL13B Joubert syndrome AR 11 10 ARL6 Bardet-Biedl syndrome, Retinitis pigmentosa AR 14 21 ARMC9 Joubert syndrome 30 AR 12 11 B9D1 Meckel syndrome AR 7 10 B9D2 Meckel syndrome AR 8 4 BBIP1# Bardet-Biedl syndrome 18 AR 1 1 BBS1 Bardet-Biedl syndrome AR 66 103 https://blueprintgenetics.com/ BBS10 Bardet-Biedl syndrome AR 90 107 BBS12 Bardet-Biedl syndrome AR 36 58 BBS2 Bardet-Biedl syndrome, Retinitis pigmentosa AR 58 91 BBS4 Bardet-Biedl syndrome AR 25 53 BBS5 Bardet-Biedl syndrome AR 18 31 BBS7 Bardet-Biedl syndrome AR 19 43 BBS9 Bardet-Biedl syndrome AR 27 52 C21ORF2 Retinal dystrophy with or without macular staphyloma (RDMS), AR 13 22 Spondylometaphyseal dysplasia, axial (SMDAX) C2CD3 Orofaciodigital syndrome XIV AR 9 10 C5ORF42 Orofaciodigital syndrome, Joubert syndrome AR 97 103 C8ORF37 Retinitis pigmentosa, Cone rod dystrophy, Bardet-Biedl syndrome 21 AR 8 17 CC2D2A COACH syndrome, Joubert syndrome, Meckel syndrome AR 76 91 CENPF Ciliary dyskinesia -Lethal Ciliopathy AR 13 8 CEP104 Joubert syndrome AR 7 5 CEP120 Short-rib thoracic dysplasia 13 with or without polydactyly AR 9 9 CEP164 Nephronophthisis AR 11 9 CEP19 Morbid obesity and spermatogenic failure, Bardet-Biedl syndrome AR 2 2 CEP290* Bardet-Biedl syndrome, Leber congenital amaurosis, Joubert syndrome, AR 130 289 Senior-Loken syndrome, Meckel syndrome CEP41 Joubert syndrome AR/Digenic 7 11 CEP83 Nephronophthisis AR 10 10 CPE Obesity, severe, and type II diabetes AR 2 CRB2 Focal segmental glomerulosclerosis, Ventriculomegaly with cystic kidney AR 12 22 disease CSPP1 Jeune asphyxiating thoracic dystrophy, Joubert syndrome AR 32 27 DCDC2 Deafness, Nephronophthisis, Sclerosing cholangitis, neonatal AR 13 9 DDX59 Orofaciodigital syndrome V AR 2 6 DHCR7 Smith-Lemli-Opitz syndrome AR 88 217 DYNC2H1 Short -rib thoracic dysplasia with or without polydactyly type 1, Short -rib AR/Digenic 148 205 thoracic dysplasia with or without polydactyly type 3, Asphyxiating thoracic dysplasia (ATD; Jeune), SRPS type 2 (Majewski) DYNC2LI1 Short-rib throacic dysplasia 15 with polydactyly AR 19 14 https://blueprintgenetics.com/ EVC Weyers acrofacial dysostosis, Ellis-van Creveld syndrome AD/AR 58 83 EVC2 Ellis-van Creveld syndrome, Weyers acrodental dysostosis AD/AR 78 75 FAM58A Toe syndactyly, telecanthus, and anogenital and renal malformations XL 8 11 (STAR syndrome) GLI2 Culler-Jones syndrome AD 29 82 GLI3 Acrocallosal syndrome, Pallister-Hall syndrome, Grieg AD 70 235 cephalopolysndactyly syndrome, Postaxial polydactyly type A, Preaxial polydactyly type 3, Preaxial polydactyly type 4 GLIS2 Nephronophthisis AR 3 3 HYLS1 Hydrolethalus syndrome AR 3 2 IFT122* Sensenbrenner syndrome, Cranioectodermal dysplasia (Levin- AR 13 23 Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2 IFT140 Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating AR 38 63 thoracic dysplasia (ATD; Jeune) IFT172 Retinitis pigmentosa, Short -rib thoracic dysplasia with or without AR 22 25 polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune) IFT27 Bardet Biedl syndrome 19 AR 1 4 IFT43 Cranioectodermal dysplasia 3 AR 4 7 IFT52 Short-rib thoracic dysplasia 16 with or without polydactyly AR 3 4 IFT80 Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating AR 11 11 thoracic dysplasia (ATD; Jeune) IFT81 Short rib thoracic dysplasia with polydactyly, Cone-Rod dystrophy, AR 4 9 autosomal recessive INPP5E Joubert syndrome, Mental retardation, truncal obesity, retinal dystrophy, AR 25 50 and micropenis (MORM syndrome) INVS Nephronophthisis AR 16 34 IQCB1 Senior-Loken syndrome AR 24 41 KIAA0556 Joubert syndrome 26 AR 2 2 KIAA0586 Short rib thoracic dysplasia with polydactyly, Joubert syndrome AR 29 31 KIAA0753 Orofaciodigital syndrome XV AR 6 7 KIF14 Meckel syndrome 12 AR 9 16 KIF7 Acrocallosal syndrome, Hydrolethalus syndrome, Al-Gazali-Bakalinova AR/Digenic 24 44 syndrome, Joubert syndrome LEFTY2* Left-right axis malformations AD 1 3 LZTFL1 Bardet-Biedl syndrome 17 AR 6 3 https://blueprintgenetics.com/ MAPKBP1 Nephronophthisis 20 AR 6 7 MKKS Bardet-Biedl syndrome, McKusick-Kaufman syndrome AR 21 59 MKS1 Bardet-Biedl syndrome, Meckel syndrome AR 50 52 NEK1 Short -rib thoracic dysplasia with or without polydactyly, SRPS type 2 AR/Digenic 22 23 (Majewski) NEK8 Nephronophthisis AR 16 18 NODAL Heterotaxy, visceral AD 4 15 NPHP1 Nephronophthisis, Joubert syndrome, Senior-Loken syndrome AR 19 76 NPHP3 Nephronophthisis, Renal-hepatic-pancreatic dysplasia, Meckel syndrome AR 38 75 NPHP4 Nephronophthisis, Senior-Loken syndrome AR 20 113 OFD1 Simpson-Golabi-Behmel syndrome, Retinitis pigmentosa, Orofaciodigital XL 153 160 syndrome, Joubert syndrome PDE6D Joubert syndrome 22 AR 3 1 PKD1* Polycystic kidney disease AD 237 1923 PKD2 Polycystic kidney disease AD 55 333 PKHD1 Polycystic kidney disease AR 249 557 PMM2 Congenital disorder of glycosylation AR 76 128 PNPLA6 Laurence-Moon syndrome, Boucher-Neuhauser syndrome, Spastic AR 26 58 paraplegia 39 POC1B Cone-rod dystrophy 20 AR 4 7 RPGRIP1L COACH syndrome, Joubert syndrome, Meckel syndrome, Retinal AR 39 49 degeneration in ciliopathy, modifier SCAPER Retinal dystrophy, Retinitis pigmentosa, Intellectual disability, Bardet-Biedl AR 4 7 syndrome SCLT1 Senior-Loken syndrome, Retinal dystrophy 3 SDCCAG8 Bardet-Biedl syndrome, Senior-Loken syndrome AR 14 18 TCTEX1D2 Short-rib thoracic dysplasia 17 with or without polydactyly, Jeune AR 4 6 Asphyxiating Thoracic Dystrophy TCTN1 Joubert syndrome AR 6 6 TCTN2 Joubert syndrome, Meckel syndrome AR 20 15 TCTN3 Orofaciodigital syndrome (Mohr-Majewski syndrome), Joubert syndrome AR 9 12 TMEM107 Joubert syndrome AR 10 3 TMEM138 Joubert syndrome AR 6 8 TMEM216 Joubert syndrome, Meckel syndrome AR 17 8 https://blueprintgenetics.com/ TMEM231 Joubert syndrome, Meckel syndrome AR 12 19 TMEM237 Joubert syndrome AR 7 11 TMEM67 Nephronophthisis, COACH syndrome, Joubert syndrome, Meckel AR 87 170 syndrome TRAF3IP1 Senior-Loken syndrome 9 AR 11 15 TRIM32 Bardet-Biedl syndrome, Muscular dystrophy, limb-girdle AR 13 16 TTC21B Short-rib thoracic dysplasia, Nephronophthisis, Asphyxiating thoracic AR 23 63 dysplasia (ATD; Jeune) TTC8 Bardet-Biedl syndrome, Retinitis pigmentosa AR 5 16 USP9X Mental retardation, X-linked 99, Mental retardation, X-linked 99, XL 30 27 syndromic, female restricted WDPCP Meckel-Gruber syndrome, modifier, Bardet-Biedl syndrome, Congenital AR 6 8 heart defects, hamartomas of tongue, and polysyndactyly WDR19 Retinitis pigmentosa, Nephronophthisis, Short -rib thoracic dysplasia with AR 33 43 or without polydactyly, Senior-Loken syndrome, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Asphyxiating thoracic dysplasia (ATD; Jeune) WDR34 Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating AR 18 21 thoracic dysplasia (ATD; Jeune) WDR35 Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, AR 28 31 Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Short rib- polydactyly syndrome type 5 WDR60 Short-rib thoracic dysplasia 8 with or without polydactyly AR 12 13 ZIC3 Heterotaxy, visceral, VACTERL association, Congenital heart defects, XL 15 41 nonsyndromic ZNF423 Nephronophthisis, Joubert syndrome AD/AR 10 7 *Some regions of the gene are duplicated in the genome. Read more. # The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads), and/or the gene has exons listed under Test limitations section that are not included in the panel as they are not sufficiently covered with high quality
Recommended publications
  • VATER/VACTERL Association in Palestinian Children: a Case Report
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Research Article International Journal of Pediatrics & Child Care Open Access VATER/VACTERL Association in Palestinian Children: A Case Report Basal A Ahmed1, Elessi Khamis2* 1Specialist and Head of Pediatrics, Shaheed Mohammed Al - Durra Hospital 2Assistant Professor, Faculty of medicine, Islamic university- Gaza Received:December 13, 2017; Accepted: February 3, 2018; Published: February 6, 2018 *Corresponding author: Elessi Khamis, MD Pediatrics, Assistant Professor, Faculty of medicine, Islamic university- Gaza, E-mail: khamis_essi@yahoo. com have reported a prevalence among infants of one in 10 000 to one Abstract of at least three of the following congenital malformations: vertebral however,in 40 000 live-bornchromosomal infants abnormalities (approximately have <1-9/100,000 also been described infants) VACTERL/VATER association is typically defined by the presence [2]. Most of the cases of VACTERL association occur sporadically; defects, anal atresia, cardiac defects, tracheo-esophageal fistula, stress and usage of oral contraceptives at the initial stages of by evidence linking all of the human disease genes for the VATER/ in a few cases [3]. Maternal diabetes, teratogenic drugs, physical renal anomalies, and limb abnormalities. This finding is supported pregnancy have been suggested as possible causes [4]. VACTERL is believed to result from an early embryonic insult, more VACTERL association identified to date, namely, FGF8, FOXF1, HOXD13, LPP, TRAP1, and ZIC3, with renal malformations. VATER association was first described in 1972 by Quan and Smith. We present here a specifically of blastogenic origin occurring during the first 4 75 days male boy with cardiac (VSD, PDA), esophageal atresia, anal weeks of embryogenesis, so the expected effects are primary, abnormalities (sacral dimple), and genitourinary (hypospadias and polytopic,This early developmental embryonic field event defects can [5]lead (Figure to different 1).
    [Show full text]
  • Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
    NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants.
    [Show full text]
  • The Hydrolethalus Syndrome Protein HYLS-1 Regulates Formation of the Ciliary Gate
    ARTICLE Received 8 Sep 2015 | Accepted 30 Jun 2016 | Published 18 Aug 2016 DOI: 10.1038/ncomms12437 OPEN The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate Qing Wei1,2,*, Yingyi Zhang1,*, Clementine Schouteden3, Yuxia Zhang1, Qing Zhang1, Jinhong Dong1, Veronika Wonesch3, Kun Ling1, Alexander Dammermann3 & Jinghua Hu1,4,5 Transition fibres (TFs), together with the transition zone (TZ), are basal ciliary structures thought to be crucial for cilium biogenesis and function by acting as a ciliary gate to regulate selective protein entry and exit. Here we demonstrate that the centriolar and basal body protein HYLS-1, the C. elegans orthologue of hydrolethalus syndrome protein 1, is required for TF formation, TZ organization and ciliary gating. Loss of HYLS-1 compromises the docking and entry of intraflagellar transport (IFT) particles, ciliary gating for both membrane and soluble proteins, and axoneme assembly. Additional depletion of the TF component DYF-19 in hyls-1 mutants further exacerbates TZ anomalies and completely abrogates ciliogenesis. Our data support an important role for HYLS-1 and TFs in establishment of the ciliary gate and underline the importance of selective protein entry for cilia assembly. 1 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA. 2 Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China. 3 Max F. Perutz Laboratories, Vienna Biocenter (VBC), University of Vienna, A-1030 Vienna, Austria. 4 Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA. 5 Mayo Translational PKD Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
    [Show full text]
  • Unraveling the Genetics of Joubert and Meckel-Gruber Syndromes
    Journal of Pediatric Genetics 3 (2014) 65–78 65 DOI 10.3233/PGE-14090 IOS Press Unraveling the genetics of Joubert and Meckel-Gruber syndromes Katarzyna Szymanska, Verity L. Hartill and Colin A. Johnson∗ Department of Ophthalmology and Neuroscience, University of Leeds, Leeds, UK Received 27 May 2014 Revised 11 July 2014 Accepted 14 July 2014 Abstract. Joubert syndrome (JBTS) and Meckel-Gruber syndrome (MKS) are recessive neurodevelopmental conditions caused by mutations in proteins that are structural or functional components of the primary cilium. In this review, we provide an overview of their clinical diagnosis, management and molecular genetics. Both have variable phenotypes, extreme genetic heterogeneity, and display allelism both with each other and other ciliopathies. Recent advances in genetic technology have significantly improved diagnosis and clinical management of ciliopathy patients, with the delineation of some general genotype-phenotype correlations. We highlight those that are most relevant for clinical practice, including the correlation between TMEM67 mutations and the JBTS variant phenotype of COACH syndrome. The subcellular localization of the known MKS and JBTS proteins is now well-described, and we discuss some of the contemporary ideas about ciliopathy disease pathogenesis. Most JBTS and MKS proteins localize to a discrete ciliary compartment called the transition zone, and act as structural components of the so-called “ciliary gate” to regulate the ciliary trafficking of cargo proteins or lipids. Cargo proteins include enzymes and transmembrane proteins that mediate intracellular signaling. The disruption of transition zone function may contribute to the ciliopathy phenotype by altering the composition of the ciliary membrane or axoneme, with impacts on essential developmental signaling including the Wnt and Shh pathways as well as the regulation of secondary messengers such as inositol-1,4,5-trisphosphate (InsP3) and cyclic adenosine monophosphate (cAMP).
    [Show full text]
  • A 10-Year-Old Girl with Joubert Syndrome and Chronic Kidney Disease and Its Related Complications
    4226 Letter to the Editor A 10-year-old girl with Joubert syndrome and chronic kidney disease and its related complications Chong Tian1#, Jiaxiang Chen1,2#, Xing Ming1, Xianchun Zeng1, Rongpin Wang1 1Department of Medical Imaging, Guizhou Provincial People’s Hospital, Guiyang, China; 2Guizhou University School of Medicine, Guiyang, China #These authors contributed equally to this work. Correspondence to: Rongpin Wang. Department of Medical Imaging, Guizhou Provincial People’s Hospital, Zhongshan East Road 83, Guiyang 550002, China. Email: [email protected]. Submitted Aug 05, 2020. Accepted for publication Apr 01, 2021. doi: 10.21037/qims-20-943 View this article at: http://dx.doi.org/10.21037/qims-20-943 Introduction and ankles was tolerated without redness, swelling, fistula, or sinus tract surrounding the skin. She had been healthy in Joubert syndrome (JS) is a rare genetic disorder of recessive the past, and her academic performance was moderate. She neurodevelopmental disorder characterized by distinctive was a picky eater and had a mild short stature but showed cerebellar vermis and mid-hindbrain hypoplasia/dysplasia no other development dysplasia. Nystagmus, oculomotor called the “molar tooth sign” (MTS) (1). Patients present apraxia, hypotonia, and abnormal breathing patterns were with symptoms characteristic of hypotonia in infancy not observed. Concerning the patient’s family history, her and later develop ataxia, ocular motor apraxia, and may mother and father appeared normal, but their first child died also present with developmental delays or intellectual retardation. Defined by the central nervous system features, of renal failure at the age of 4, their second-born twin sons JS also affects many other organs, such as the kidneys, liver, died in the perinatal period (causes unknown), and a third and bones.
    [Show full text]
  • Holt-Oram Syndrome: a Clinical Genetic Study J Med Genet: First Published As 10.1136/Jmg.33.4.300 on 1 April 1996
    300_0fMed Genet 1996;33:300-307 Holt-Oram syndrome: a clinical genetic study J Med Genet: first published as 10.1136/jmg.33.4.300 on 1 April 1996. Downloaded from R A Newbury-Ecob, R Leanage, J A Raebum, I D Young Abstract to clarify the spectrum of abnormalities and to A clinical and genetic study of the Holt- delineate the HOS phenotype led us to review Oram syndrome (HOS) has been carried the clinical features in our patients, and dis- out in the United Kingdom involving 55 tinguish the clinical features most helpful for cases designated Holt-Oram syndrome, counselling purposes. together with their parents and sibs. Data This study was carried out in conjunction from the clinical assessment of both fa- with a genetic linkage study which has shown milial and isolated cases were used to de- genetic heterogeneity in the Holt-Oram syn- fine the HOS phenotype and to outline drome, with one gene (HOS1) being localised the spectrum of abnormalities, especially to chromosome 12 in five out ofseven families.7 factors affecting severity. Skeletal defects No phenotypic differences could be detected affected the upper limbs exclusively and between the linked and unlinked families. were bilateral and asymmetrical. They ranged from minor signs such as clino- dactyly, limited supination, and sloping Patients and methods shoulders to severe reduction deformities The study was carried out between March 1991 of the upper arm (4.5%). The radial ray and September 1993. Cases were ascertained was predominantly affected and the left by contacting clinical geneticists and paediatric side was more severely affected than the cardiologists and through the support group right.
    [Show full text]
  • Molar Tooth Sign of the Midbrain-Hindbrain Junction
    American Journal of Medical Genetics 125A:125–134 (2004) Molar Tooth Sign of the Midbrain–Hindbrain Junction: Occurrence in Multiple Distinct Syndromes Joseph G. Gleeson,1* Lesley C. Keeler,1 Melissa A. Parisi,2 Sarah E. Marsh,1 Phillip F. Chance,2 Ian A. Glass,2 John M. Graham Jr,3 Bernard L. Maria,4 A. James Barkovich,5 and William B. Dobyns6** 1Division of Pediatric Neurology, Department of Neurosciences, University of California, San Diego, California 2Division of Genetics and Development, Children’s Hospital and Regional Medical Center, University of Washington, Washington 3Medical Genetics Birth Defects Center, Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 4Department of Child Health, University of Missouri, Missouri 5Departments of Radiology, Pediatrics, Neurology, Neurosurgery, University of California, San Francisco, California 6Department of Human Genetics, University of Chicago, Illinois The Molar Tooth Sign (MTS) is defined by patients with these variants of the MTS will an abnormally deep interpeduncular fossa; be essential for localization and identifica- elongated, thick, and mal-oriented superior tion of mutant genes. ß 2003 Wiley-Liss, Inc. cerebellar peduncles; and absent or hypo- plastic cerebellar vermis that together give KEY WORDS: Joubert; molar tooth; Va´ r- the appearance of a ‘‘molar tooth’’ on axial adi–Papp; OFD-VI; COACH; brain MRI through the junction of the mid- Senior–Lo¨ ken; Dekaban– brain and hindbrain (isthmus region). It was Arima; cerebellar vermis; first described in Joubert syndrome (JS) hypotonia; ataxia; oculomo- where it is present in the vast majority of tor apraxia; kidney cysts; patients with this diagnosis.
    [Show full text]
  • American Board of Psychiatry and Neurology, Inc
    AMERICAN BOARD OF PSYCHIATRY AND NEUROLOGY, INC. CERTIFICATION EXAMINATION IN NEUROLOGY 2015 Content Blueprint (January 13, 2015) Part A Basic neuroscience Number of questions: 120 01. Neuroanatomy 3-5% 02. Neuropathology 3-5% 03. Neurochemistry 2-4% 04. Neurophysiology 5-7% 05. Neuroimmunology/neuroinfectious disease 2-4% 06. Neurogenetics/molecular neurology, neuroepidemiology 2-4% 07. Neuroendocrinology 1-2% 08. Neuropharmacology 4-6% Part B Behavioral neurology, cognition, and psychiatry Number of questions: 80 01. Development through the life cycle 3-5% 02. Psychiatric and psychological principles 1-3% 03. Diagnostic procedures 1-3% 04. Clinical and therapeutic aspects of psychiatric disorders 5-7% 05. Clinical and therapeutic aspects of behavioral neurology 5-7% Part C Clinical neurology (adult and child) The clinical neurology section of the Neurology Certification Examination is comprised of 60% adult neurology questions and 40% child neurology questions. Number of questions: 200 01. Headache disorders 1-3% 02. Pain disorders 1-3% 03. Epilepsy and episodic disorders 1-3% 04. Sleep disorders 1-3% 05. Genetic disorders 1-3% 2015 ABPN Content Specifications Page 1 of 22 Posted: Certification in Neurology AMERICAN BOARD OF PSYCHIATRY AND NEUROLOGY, INC. 06. Congenital disorders 1-3% 07. Cerebrovascular disease 1-3% 08. Neuromuscular diseases 2-4% 09. Cranial nerve palsies 1-3% 10. Spinal cord diseases 1-3% 11. Movement disorders 1-3% 12. Demyelinating diseases 1-3% 13. Neuroinfectious diseases 1-3% 14. Critical care 1-3% 15. Trauma 1-3% 16. Neuro-ophthalmology 1-3% 17. Neuro-otology 1-3% 18. Neurologic complications of systemic diseases 2-4% 19.
    [Show full text]
  • Intraflagellar Transport Proteins Are Essential for Cilia Formation and for Planar Cell Polarity
    BASIC RESEARCH www.jasn.org Intraflagellar Transport Proteins Are Essential for Cilia Formation and for Planar Cell Polarity Ying Cao, Alice Park, and Zhaoxia Sun Department of Genetics, Yale University School of Medicine, New Haven, Connecticut ABSTRACT The highly conserved intraflagellar transport (IFT) proteins are essential for cilia formation in multiple organisms, but surprisingly, cilia form in multiple zebrafish ift mutants. Here, we detected maternal deposition of ift gene products in zebrafish and found that ciliary assembly occurs only during early developmental stages, supporting the idea that maternal contribution of ift gene products masks the function of IFT proteins during initial development. In addition, the basal bodies in multiciliated cells of the pronephric duct in ift mutants were disorganized, with a pattern suggestive of defective planar cell polarity (PCP). Depletion of pk1, a core PCP component, similarly led to kidney cyst formation and basal body disorganization. Furthermore, we found that multiple ift genes genetically interact with pk1. Taken together, these data suggest that IFT proteins play a conserved role in cilia formation and planar cell polarity in zebrafish. J Am Soc Nephrol 21: 1326–1333, 2010. doi: 10.1681/ASN.2009091001 The cilium is a cell surface organelle that is almost In zebrafish, mutants of ift57, ift81, ift88, and ubiquitously present on vertebrate cells. Pro- ift172 have numerous defects commonly associated truding from the cell into its environment, the with ciliary abnormalities.13,14
    [Show full text]
  • Joubert Syndrome Genereview
    Title: Joubert Syndrome GeneReview — Molecular Genetics: Less Common Genetic Causes Authors: Parisi M, Glass I Updated: June 2017 Note: The following information is provided by the authors listed above and has not been reviewed by GeneReviews staff. Joubert Syndrome: Less Common Genetic Causes ARL13B B9D1 B9D2 CEP41 IFT172 KIF7 OFD1 (CXORF5) PDE6D POC1B TCTN1 TCTN3 TMEM138 TMEM231 TMEM237 (ALS2CR4) TTC21B ARL13B Gene structure. ARL13B is a ten-exon gene that encodes a 428-amino acid protein. Pathogenic variants. Two families with a phenotype typical of classic Joubert syndrome had missense and/or nonsense variants in this gene; one of these individuals also had evidence of a retinopathy [Cantagrel et al 2008]. Normal gene product. ARL13B encodes ADP-ribosylation factor-like protein 13B, a member of the ADP-ribosylation factor-like family. Multiple transcript variants result from alternate splicing; two protein isoforms are known. The AR13B protein is a small GTPase in the Ras superfamily that contains both N-terminal and C-terminal guanine nucleotide-binding motifs. It is localized to the cilia and plays a role in cilia formation and maintenance as well as sonic hedgehog signaling. Abnormal gene product. In C elegans, pathogenic variants in the homolog arl13 exhibit defective cilium morphology, localization, and anterograde intraflagellar transport [Cevik et al 2010]. Mice with defects in the murine ortholog have neural tube defects and polydactyly, as well as an embryonic-lethal phenotype [Cantagrel et al 2008, Doherty 2009]. B9D1. See Tables A and B. B9D2. See Tables A and B. CEP41 Gene structure. The gene consists of 11 exons and spans approximately 50 kb.
    [Show full text]
  • Joubert Syndrome and Related Disorders
    Brancati et al. Orphanet Journal of Rare Diseases 2010, 5:20 http://www.ojrd.com/content/5/1/20 REVIEW Open Access JoubertReview Syndrome and related disorders Francesco Brancati1,2, Bruno Dallapiccola3 and Enza Maria Valente*1,4 Abstract Joubert syndrome (JS) and related disorders (JSRD) are a group of developmental delay/multiple congenital anomalies syndromes in which the obligatory hallmark is the molar tooth sign (MTS), a complex midbrain-hindbrain malformation visible on brain imaging, first recognized in JS. Estimates of the incidence of JSRD range between 1/80,000 and 1/ 100,000 live births, although these figures may represent an underestimate. The neurological features of JSRD include hypotonia, ataxia, developmental delay, intellectual disability, abnormal eye movements, and neonatal breathing dysregulation. These may be associated with multiorgan involvement, mainly retinal dystrophy, nephronophthisis, hepatic fibrosis and polydactyly, with both inter- and intra-familial variability. JSRD are classified in six phenotypic subgroups: Pure JS; JS with ocular defect; JS with renal defect; JS with oculorenal defects; JS with hepatic defect; JS with orofaciodigital defects. With the exception of rare X-linked recessive cases, JSRD follow autosomal recessive inheritance and are genetically heterogeneous. Ten causative genes have been identified to date, all encoding for proteins of the primary cilium or the centrosome, making JSRD part of an expanding group of diseases called "ciliopathies". Mutational analysis of causative genes is available in few laboratories worldwide on a diagnostic or research basis. Differential diagnosis must consider in particular the other ciliopathies (such as nephronophthisis and Senior-Loken syndrome), distinct cerebellar and brainstem congenital defects and disorders with cerebro-oculo-renal manifestations.
    [Show full text]
  • Renal Cystic Disorders Infosheet 6-14-19
    Next Generation Sequencing Panel for Renal Cystic Disorders Clinical Features: Renal cystic diseases are a genetically heterogeneous group of conditions characterized By isolated renal disease or renal cysts in conjunction with extrarenal features (1). Age of onset of renal cystic disease ranges from neonatal to adult onset. Common features of renal cystic diseases include renal insufficiency and progression to end stage renal disease (ESRD). Identification of the genetic etiology of renal cystic disease can aid in appropriate clinical management of the affected patient. Our Renal Cystic Disorders Panel includes sequence and deletion/duplicaton analysis of all 79 genes listed below. Renal Cystic Disorders Sequencing Panel AHI1 BMPER HNF1B NEK8 TCTN3 WDPCP ANKS6 C5orf42 IFT27 NOTCH2 TFAP2A WDR19 ARL13B CC2D2A IFT140 NPHP1 TMEM107 XPNPEP3 ARL6 CDC73 IFT172 NPHP3 TMEM138 ZNF423 B9D1 CEP104 INPP5E NPHP4 TMEM216 B9D2 CEP120 INVS OFD1 TMEM231 BBIP1 CEP164 IQCB1 PDE6D TMEM237 BBS1 CEP290 JAG1 PKD2 TMEM67 BBS10 CEP41 KIAA0556 PKHD1 TRIM32 BBS12 CEP83 KIAA0586 REN TSC1 BBS2 CRB2 KIF14 RPGRIP1L TSC2 BBS4 CSPP1 KIF7 SALL1 TTC21B BBS5 DCDC2 LZTFL1 SDCCAG8 TTC8 BBS7 GLIS2 MKKS TCTN1 UMOD BBS9 GLIS3 MKS1 TCTN2 VHL Disorder Genes Inheritance Clinical features/molecular genetics Bardet Biedl ARL6 AR Bardet-Biedl syndrome (BBS) is an autosomal syndrome BBS1 recessive multi-systemic ciliopathy characterized By BBS10 retinal dystrophy, oBesity, postaxial polydactyly, BBS12 leaning difficulties, renal involvement and BBS2 genitourinary abnormalities (2). Visual prognosis is BBS4 poor, and the mean age of legal Blindness is 15.5 BBS5 years. Birth weight is typically normal But significant BBS7 weight gain Begins within the first year. Renal BBS9 disease is a major cause of morBidity and mortality.
    [Show full text]