Sfblake and Tithonia Diversifolia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prospects for Biological Control of Ambrosia Artemisiifolia in Europe: Learning from the Past
DOI: 10.1111/j.1365-3180.2011.00879.x Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past EGERBER*,USCHAFFNER*,AGASSMANN*,HLHINZ*,MSEIER & HMU¨ LLER-SCHA¨ RERà *CABI Europe-Switzerland, Dele´mont, Switzerland, CABI Europe-UK, Egham, Surrey, UK, and àDepartment of Biology, Unit of Ecology & Evolution, University of Fribourg, Fribourg, Switzerland Received 18 November 2010 Revised version accepted 16 June 2011 Subject Editor: Paul Hatcher, Reading, UK management approach. Two fungal pathogens have Summary been reported to adversely impact A. artemisiifolia in the The recent invasion by Ambrosia artemisiifolia (common introduced range, but their biology makes them unsuit- ragweed) has, like no other plant, raised the awareness able for mass production and application as a myco- of invasive plants in Europe. The main concerns herbicide. In the native range of A. artemisiifolia, on the regarding this plant are that it produces a large amount other hand, a number of herbivores and pathogens of highly allergenic pollen that causes high rates of associated with this plant have a very narrow host range sensitisation among humans, but also A. artemisiifolia is and reduce pollen and seed production, the stage most increasingly becoming a major weed in agriculture. sensitive for long-term population management of this Recently, chemical and mechanical control methods winter annual. We discuss and propose a prioritisation have been developed and partially implemented in of these biological control candidates for a classical or Europe, but sustainable control strategies to mitigate inundative biological control approach against its spread into areas not yet invaded and to reduce its A. -
Barcoding the Asteraceae of Tennessee, Tribe Coreopsideae
Schilling, E.E., N. Mattson, and A. Floden. 2014. Barcoding the Asteraceae of Tennessee, tribe Coreopsideae. Phytoneuron 2014-101: 1–6. Published 20 October 2014. ISSN 2153 733X BARCODING THE ASTERACEAE OF TENNESSEE, TRIBE COREOPSIDEAE EDWARD E. SCHILLING, NICHOLAS MATTSON, AARON FLODEN Herbarium TENN Department of Ecology & Evolutionary Biology University of Tennessee Knoxville, Tennessee 37996 [email protected]; [email protected] ABSTRACT Results from barcoding studies of tribe Coreopsideae for the Tennessee flora using the nuclear ribosomal ITS marker are presented and include the first complete reports for 2 of the 20 species of the tribe that occur in the state, as well as updated reports for several others. Sequence data from the ITS region separate most of the species of Bidens in Tennessee from one another, but species of Coreopsis, especially those of sect. Coreopsis, have ITS sequences that are identical (or nearly so) to at least one congener. Comparisons of sequence data to GenBank records are complicated by apparent inaccuracies of older sequences as well as potentially misidentified samples. Broad survey of C. lanceolata from across its range showed little variability, but the ITS sequence of a morphologically distinct sample from a Florida limestone glade area was distinct in lacking a length polymorphism that was present in other samples. Tribe Coreopsideae is part of the Heliantheae alliance and earlier was often included in an expanded Heliantheae (Anderberg et al. 2007) in which it was usually treated as a subtribe (Crawford et al. 2009). The tribe shows a small burst of diversity in the southeastern USA involving Bidens and Coreopsis sect. -
Coreopsideae Daniel J
Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae. -
The Genus Canidia Thomson, 1857 (Coleoptera: Cerambycidae, Lamiinae, Acanthocinini)
Zootaxa 927: 1–27 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 927 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) The genus Canidia Thomson, 1857 (Coleoptera: Cerambycidae, Lamiinae, Acanthocinini) JAMES E. WAPPES¹ & STEVEN W. LINGAFELTER² ¹ American Coleoptera Museum, 179 Fall Creek, Bulverde, TX 78163 U. S. A. [email protected] ² Systematic Entomology Lab, Plant Sciences Institute, Agriculture Research Service, USDA, National Museum of Natural History, Smithsonian Institution, MRC-168, Washington, DC 20013-7012 U. S. A. [email protected] Abstract The lamiine genus Canidia Thomson is redefined with Canidiopsis Dillon and Pseudocanidia Dil- lon as new synonyms. Three new species from Mexico are described and illustrated: Canidia chemsaki, C. giesberti, and C. turnbowi. The following new synonymies are proposed: Canidiop- sis similis Dillon, 1955 and Canidiopsis hebes Dillon, 1955 = Canidia mexicana Thomson, 1860; Pseudocanidia cuernavacae Dillon, 1955 = Dectes spinicornis Bates, 1881; and Dectes (Canidia) balteata var. inapicalis Tippmann, 1960 = Dectes balteatus Lacordaire, 1872. A key to the eight species and one subspecies is presented. Key words: Insecta, Coleoptera, Cerambycidae, Lamiinae, Acanthocinini, Canidia, Dectes, Can- idiopsis, Pseudocanidia, new species, key Resumen: Se redefine el género Canidia Thomson con Canidiopsis Dillon y Pseudocanidia Dillon como sinónimos nuevos. Describimos e ilustramos tres especies nuevas de México: Canidia chemsaki, C. giesberti y C. turnbowi. Se proponen los siguientes sinónimos nuevos: Canidiopsis similis Dillon, 1955 y Canidiopsis hebes Dillon 1955 = Canidia mexicana Thomson, 1860; Pseudocanidia cuernavacae Dillon, 1955 = Dectes spinicornis Bates, 1881; y Dectes (Canidia) balteata inapicalis Tippmann, 1960 = Dectes balteatus Lacordaire, 1872. Se incluye una clave para separar las ocho especies y una subespecie. -
Japanese Sunflower Tithonia Diversifolia
Invasive plant Japanese sunflower Tithonia diversifolia Japanese sunflower is native to Central America. It is a Legal requirements serious environmental weed, forming dense thickets and out-competing native vegetation. Japanese sunflower is not a prohibited or restricted invasive plant under the Biosecurity Act 2014. However, Japanese sunflower is commonly a weed on roadsides by law, everyone has a general biosecurity obligation and embankments in coastal Queensland and northern (GBO) to take reasonable and practical steps to minimise coastal New South Wales. It is widespread and common the risks associated with invasive plants under their in far north Queensland, particularly on roadsides, control. embankments, unmanaged lands and fire degraded hillsides. Local governments must have a biosecurity plan that A similar species Tithonia rotundifolia is known as Mexican covers invasive plants in their area. This plan may include sunflower. This weed is smaller in height and flower size, actions to be taken on certain species. Some of these and its distribution as an environmental weed is similar to actions may be required under local laws. Contact your Japanese sunflower in Queensland but not as common in local government for more information. New South Wales. Description situations specified on the product labels. A permit held by the Department of Agriculture and Fisheries allows Japanese sunflower stands up to to 3 m. Flowers are people generally to use some herbicide products to control sunflower-like heads up to 10 cm across, with yellow flower Japanese sunflower as an environmental weed in various centres and reddish-orange petals 4–5 cm long. The stems situations. -
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
2003 Vol. 6, Issue 3
Department of Systematic Biology - Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 6 - No. 3 July-September 2003 Botany Profile A Colossus of the Compositae By Robert DeFilipps e has named or described 2,800 employment in Washington, D.C., as labored. For example, just a glance at the new species and subtribes, a Associate Curator of lower plants (1962- South American journal Ernstia will figure equal to one-quarter the 1964) at the Smithsonian Institution, and reveal that in the Tribe Eupatorieae as Hnumber of flowering plants named by Carl successively as Associate Curator (1964- represented in Venezuela with 35 genera, Linnaeus, the originator of binomial 1971) and Curator of Botany from 1971 to Robinson (with co-worker King) has nomenclature, and the equivalent of the present. named at least one species in 27 of the approximately one-tenth the total number An incisive, perennially questing mind genera (V. Badillo, vol. 11. 2001). Similarly, of species in his chosen family of has allowed him to delve, often with new country records of species named expertise, the immense Compositae collaborators, into the taxonomy of groups by Robinson seem to appear everywhere, (Asteraceae). His singular contribution of as diverse as the bryophytes of many such as in Peru, from which three species more than 650 publications advancing the regions; green algae (a new genus Struve- of Eupatorieae previously regarded as taxonomy of the composites, as well as of opsis from Diego Garcia, Indian Ocean, endemic to Ecuador have recently been the bryophytes (mosses and liverworts), with Charlie Rhyne); the Brazilian members reported (Cronquistianthus leucophyl- the insect family Dolichopodidae, and of the dicot family Hippocrateaceae, with lus, Crossothamnus gentryi, Ophryos- many other groups, reflect both the Lyman Smith; scanning electron micros- porus integrifolia; H. -
Ethnoentomological and Distributional Notes on Cerambycidae and Other Coleoptera of Guerrero and Puebla,Mexico
The Coleopterists Bulletin, 71(2): 301–314. 2017. ETHNOENTOMOLOGICAL AND DISTRIBUTIONAL NOTES ON CERAMBYCIDAE AND OTHER COLEOPTERA OF GUERRERO AND PUEBLA,MEXICO JONATHAN D. AMITH Research Affiliate, Department of Anthropology, Gettysburg College, Campus Box 2895, Gettysburg, PA 17325, U.S.A. and Research Associate, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. AND STEVEN W. LINGAFELTER Systematic Entomology Laboratory, Agriculture Research Service, United States Department of Agriculture, National Museum of Natural History, Smithsonian Institution,Washington, DC 20013-7012, U.S.A. Current address: 8920 South Bryerly Ct., Hereford, AZ 85615, U.S.A. ABSTRACT This article presents both ethnoentomological notes on Nahuatl and Mixtec language terms as they are applied to Cerambycidae (Coleoptera) and distributional records for species collected during three projects carried out in the states of Guerrero and Puebla, Mexico. Some comparative data from other Mesoamerican and Native American languages are discussed. Indigenous common names are mapped onto current taxonomic nomenclature, and an analysis is offered of the logical basis for Indigenous classification: the exclusion of some cerambycids and the inclusion of other beetles in the nominal native “cerambycid” category. New state distributional records for the Cerambycidae collected in this study are offered for Guerrero: Bebelis picta Pascoe, Callipogon senex Dupont, Neocompsa macrotricha Martins, Olenosus ser- rimanus Bates, Ornithia mexicana zapotensis Tippmann, Stenygra histrio Audinet-Serville, Strongylaspis championi Bates, Lissonotus flavocinctus puncticollis Bates, and Nothopleurus lobigenis Bates; and Puebla: Juiaparus mexicanus (Thomson), Ptychodes guttulatus Dillon and Dillon, and Steirastoma senex White. Key Words: linguistics, etymology, Nahuatl, Mixtec, longhorned beetle, wood-borer DOI.org/10.1649/0010-065X-71.2.301 The present article emerges from two language shapes. -
Classification of Oilseed Rape Visiting Insects in Relation to the Sulphur Supply
Classification of oilseed rape visiting insects in relation to the sulphur supply Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Fahmia Aljmli aus Homs, Syria 1. Referent: apl. Professor Dr. Ewald Schnug 2. Referent: apl. Professor Dr. Dirk Selmar eingereicht am: 25.06.2007 mündliche Prüfung (Disputation) am: 30.08.2007 Druckjahr 2007 Acknowledgements I take this opportunity with much pleasure to thank all the people who have helped me through the course of my journey towards producing this thesis. First, I would like to express my deepest thanks to my supervisors: Prof. Dr. Dr. Ewald Schnug for his wise advices and all aspects of this project. I would like to thanks my committee members Prof. Dr. Dirk Selmar, Prof. Dr. Wolfgang Büchs and Prof. Dr. Robert Kreuzig for reviewing my thesis and taking time out to attend my oral defense. I would like to thank all members and colleagues of the institute of plant nutrition and soil science (FAL). Especial thanks go to Dr. Elke Bloem for their guidance, suggestions, discussions and the interpretations of the data during my study, which were always fruitful. I would like to thank her for everything that I learnt from her. Without her, this thesis would not have been possible. I would like to express my gratitude to all members in the institute of plant protection in field crops and grassland at BBA (in Braunschweig), especially to Prof. -
Enhancing Archaeoparasitology By
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE DIGGING DEEPER: ENHANCING ARCHAEOPARASITOLOGY BY COMBINING MOLECULAR METHODS WITH TRADITIONAL MORPHOLOGICAL APPROACHES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By LAUREN MARIE CLEELAND Norman, Oklahoma 2015 DIGGING DEEPER: ENHANCING ARCHAEOPARASITOLOGY BY COMBINING MOLECULAR METHODS WITH TRADITIONAL MORPHOLOGICAL APPROACHES A DISSERTATION APPROVED FOR THE DEPARTMENT OF ANTHROPOLOGY BY ______________________________ Dr. Cecil M. Lewis, Co-Chair ______________________________ Dr. Susan C. Vehik, Co-Chair ______________________________ Dr. Tassie Hirschfeld ______________________________ Dr. Patrick Livingood ______________________________ Dr. Paul Lawson © Copyright by LAUREN MARIE CLEELAND 2015 All Rights Reserved. I dedicate this dissertation to the memory of my husband, Peter Riley Cleeland (1966-2012). Acknowledgements I offer my deepest gratitude to the members of my committee, who have encouraged and supported me through the doctoral process. Especially, I thank Dr. Cecil Lewis and Dr. Susan Vehik for their guidance and the gift of their knowledge, and supporting me through the loss of my husband, which delayed this process. I thank Dr. Tassie Hirschfeld for her insight and direction in thinking about the modern implications of prehistoric parasite work. I thank Dr. Patrick Livingood for his wisdom and enthusiasm and his willingness to always discuss a variety of topics. I thank Dr. Paul Lawson for bringing a broader ecological consideration to the study of prehistoric parasitism. I thank the University of Oklahoma Graduate School for providing the opportunity for me to study and gain the experience I need to master the concepts that have culminated in this dissertation. I thank the Department of Anthropology for their support and guidance. -
Mexican Sunflower, Tithonia Rotundifolia
A Horticulture Information article from the Wisconsin Master Gardener website, posted 6 Aug 2018 Mexican sunfl ower, Tithonia rotundifolia The genus Tithonia in the daisy family (Asteraceae) includes 10-15 species of bushy annuals, perennials and shrubs native to Mexico and Central America that have large, brightly colored daisy-like fl owers on thick stems. Mexican sunfl ower, T. rotundifolia, is a vigorous, drought tolerant warm season annual that is easy to grow in the ornamental garden with other common names of red sunfl ower of just tithonia. Tithonia plants grow 4-6+ feet tall, with a large central stalk and a somewhat gangly branching habit. The stems can be brittle. The dark green leaves are ovate to deltoid (triangular) in shape, with serrate to crenate margins. The coarse leaves are usually entire but occasionally will be three lobed. Mexican sunfl ower, Tithonia rotundifolia, is a tall plant. The foliage and stems are covered with a soft downy fuzz, and the underside of The foliage of Mexican sunfl ower is coarse and hairy (L); the ovoid to deltoid the leaves are hairy. leaves have serrate margins and are usually entire (C) but may be three lobed (R). Flowers are produced from mid-summer until frost. The solitary fl owers are borne on fragile hollow peduncles (fl ower stems) that are susceptible to being bent and are often broken by birds. Each 3-inch blossom has a number of bright red to orange ray fl owers surrounding the central yellow disk fl owers. Thick, fuzzy buds (L) open (LC) to reveal bright red to orange ray fl owers (C) surrounding yellow disk fl owers (RC) that remain for a while after the ray fl owers fall off (R). -
Revision of the Genus Tithonia •. • •
.;. .• • • REVISION OF THE GENUS TITHONIA •. • • By S. F. BLAKE. INTRODUCTION. The genus Tith01lia, originally described in 1789 in Jussieu's Genera 1 without citation of species, was adopted by J. F. Gmelin' two years later, and the single known species was given the binomial T. unijWra, a name which has been universally displaced by the later Tithooia tagetijlqra, published by Desfontaines in 1802 with a full description and plate. The same plant, grown by Philip Mi lIer in his Chelsea garden from seed sent presumably from Veracruz by William Houstoun, had been described in the eighth edition of the Gardeners' Dictionary in 1768 as Tagetes rotundifolia, and as this is the earliest binomial given the species it must now be known as Tithonia rOflundifolia. It is a showy annual with large, orange or golden-yellow heads, much like the common sunflower in appearance except for the yellow disk, and seems worthy the attention of horticulturists. As here recognized, the genus Tithooia includes ten species, native from northern Mexico to Panama. One species, T. rotundifolia, occurs also in the Greater and Lesser Antilles, and in Venezuela (where certainly introduced), and another, T. diversifolia, has become a weed in Ceylon and Burma and at Singapore. As the relationships of the genus to Helianthus and Viguiera have already been COn sidered in some detail by the writer in another publication,' only brief notice of them is necessary here. The typical pappus-bearing members of the genus are separated from H elianthU8 by their per sistent pappus of awns and squamellae, and from Viguiera chiefly by their fistulose peduncles and by certain details of involucre.