Journal of Nutritional Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[PDF] Dinosaur Eggshell from the Red Sandstone Group of Tanzania
Journal of Vertebrate Paleontology 24(2):494±497, June 2004 q 2004 by the Society of Vertebrate Paleontology NOTE DINOSAUR EGGSHELL FROM THE RED SANDSTONE GROUP OF TANZANIA MICHAEL D. GOTTFRIED1, PATRICK M. O'CONNOR2, FRANKIE D. JACKSON3, ERIC M. ROBERTS4, and REMEGIUS CHAMI5, 1Mich- igan State University Museum, East Lansing, Michigan, 48824, [email protected]; 2College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701; 3Department of Earth Sciences, Montana State University, Bozeman, Montana, 59717; 4Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, 84112, 5Antiquities Unit, P.O. Box 2280, Dar es Salaam, Tanzania Investigations over the last several decades at Gondwanan Mesozoic Although the age of the Red Sandstone Group is poorly understood (see localities have signi®cantly expanded our knowledge of the diversity Damblon et al., 1998), a Cretaceous age is suggested at this site based and distribution of Southern Hemisphere dinosaurs. These records are on (1) the overall composition of the fauna, which includes titanosaurid? primarily based on skeletal remains, but included among them are in- sauropods and both avian and nonavian theropods, as well as osteo- stances of preserved eggshell, notably from Argentina (e.g., Calvo et glossomorph ®shes, and (2) the possibility that these deposits may be al., 1997; Chiappe et al., 1998) and India (e.g., Khosla and Sahni, 1995). approximately coeval with the Cretaceous dinosaur beds of Malawi (Ja- In general, however, dinosaur eggshell is relatively poorly known from cobs et al., 1990), which lie ca. 200 km southeast of the Mbeya region. Gondwana, and from Africa in particular. -
Using Egg Density and Egg Mass Techniques for Incubation Stage Assessment to Predict Hatch Dates of Greater Flamingo Phoenicopterus Ruber Roseus Eggs
131 Using egg density and egg mass techniques for incubation stage assessment to predict hatch dates of Greater Flamingo Phoenicopterus ruber roseus eggs N. Jarrett1, V. Mason1, L. Wright2 & V. Levassor1 'The Wildfowl and Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT, UK. Email: nigel. jarrett0w w t. org. uk Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. Egg density and the egg mass techniques for incubation stage assess ment were developed to predict the hatch dates of Greater Flamingo Phoenicopterus ruber roseus eggs laid in captivity at WWT, Slimbridge, UK. The accuracy of each technique was tested on 20 parentally incubat ed eggs by comparing actual hatch date with predicted hatch date. For the egg mass technique a strong positive correlation existed between actual and predicted fresh mass, suggesting that model accuracy was high. Both techniques predicted hatch dates within two days 80% of the time. These techniques were found to be useful for accurate incubation stage assessment of Greater Flamingo eggs and the authors encourage aviculturalists managing captive colonies to use them. Key Words: egg mass, egg density, incubation stage assessment, Greater Flamingo, Phoenicopterus ruber roseus Each year at The Wildfowl and shallowly flooded islands. Single eggs Wetlands Trust (WWT), Slimbridge, UK, are laid on these nest mounds, and up to 60 pairs of colonially breeding cap nest-defence duties are shared by both tive Greater Flamingos Phoenicopterus sexes until a chick is hatched after 26- ruber roseus compete for nest sites. 32 days' incubation. Fighting between Breeding pairs usually construct nest nest mound occupants and their neigh mounds, often up to 0. -
Breeding Biology of the White-Rumped Shama on Oahu, Hawaii
Wilson Bull., 106(2), 1994, pp. 3 11-328 BREEDING BIOLOGY OF THE WHITE-RUMPED SHAMA ON OAHU, HAWAII CELESTINO FLORES AGUON’ AND SHEILA CONANT* ABSTRACT.-WC studied the breeding biology of the White-rumped Shama (Copsychus malabaricus) on Oahu, Hawaii, during 1986-1987. This species is sexually dichromatic and sexually dimorphic, with males being larger. It forms monogamous pair bonds that may last two breeding seasons. The breeding season was from March through August, and territories of nesting pairs that were provided nest boxes averaged 0.09 ha in size. Only three- and four-egg clutches were observed, with four eggs being the modal clutch size. The incubation period averaged 13.6 days and the nestling period averaged 12.4 days. Both adults fed young but only the female incubated and brooded. Shamas can raise two broods in one breeding season, and reproductive success for double-brooded pairs was higher (91%) than that for single-brooded pairs (62%). Received 4 Jun. 1993, accepted 15 Sept. 1993. More species of birds have been introduced to Hawaii than to any other place (Long 1981). Caum (1933) reported that 96 bird species had been introduced in Hawaii, and Bryan (1958) reported 94 introduced species. The number of accidental or intentional introductions is now estimated at 178 (Berger 1981). Little is known about the biology of most of these species, and many were introduced without prior knowledge of their ecol- ogy or their potential for impact on Hawaiian ecosystems. The White-rumped Shama (Muscicapidae: Turdinae: Copsychus mal- abaricus), introduced to Kauai in 193 1 by Alexander Isenberger, is native to South Asia, where there are four known subspecies: Copsychus m. -
Cairanoolithus: a Large Egg for a Small Dinosaur with Wide Hips
20/11/2020 <em>Cairanoolithus</em>: a Large Egg for a Small Dinosaur With Wide Hips - UABDivulga Barcelona Research & Innovation 02/2015 Cairanoolithus: a Large Egg for a Small Dinosaur With Wide Hips The study of the microstructure of the eggshell of Cairanoolithus conducted by Albert G. Sellés and Angel Galobart, both researchers at the Catalan Institute of Palaeontology Miquel Crusafont (ICP), reveals that this egg type does not belong to sauropod dinosaurs but to ankylosaurs, and probably to Struthiosaurus, a genus of armored dinosaurs. The finding would represent the first description of thyreophora eggs (a group that includes ankylosauria and stegosauria) in the world. It is an arduous task for paleontologists to assign the fossil eggs they found in excavations to a certain dinosaur species or group of dinosaurs, especially because the lack of bones of the parents in the nests and the low probability to find embryonic remains that would help in the taxonomic assignation of the eggs. Thus, we often do not known who laid a certain fossil egg. These limitations have led scientist to design a specific system for naming and classifying fossil eggs, using concepts such as "oogenera" and "ooespecies" for its phylogenetic classification. Cairanoolithus is an oogenus discovered and described in the early 90’s. It takes its name from the first place where it was found, a site near La Cairanne, a small town from southeastern France. From then on, Cairanoolithus has been found in 25 different sites. These eggs are between 72.2 and 71.4 million years old, they are large (over 15 cm in diameter) and have a rounded shape. -
Artificial Fertilization and Egg Incubation Techniques
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Technical Manual for Artificial Propagation of the Indonesian Catfish, Pangasius djambal provided by Horizon / Pleins textes Editors: Jacques Slembrouck, Oman Komarudin, Maskur, Marc Legendre © IRD-DKP 2003, ISBN: 979-8186-92-3 Chapter V Artificial Fertilization and Egg Incubation Techniques Slembrouck J.(a, e), J. Subagja(b), D. Day(c), Firdausi(d) and M. Legendre(e) (a) IRD (Institut de recherche pour le développement), Wisma Anugraha, Jl. Taman Kemang Selatan No. 32B, 12730 Jakarta, Indonesia. (b) RIFA (Research Institute for Freshwater Aquaculture), Jl. Sempur No. 1, PO. Box 150 Bogor, Indonesia. (c) JFADC (Jambi Freshwater Aquaculture Development Centre), Jl. Jenderal Sudirman No. 16C, The Hok, Jambi Selatan, Jambi, Sumatera, Indonesia. (d) Loka BAT Mandiangin (Lokasi Budidaya Air Tawar Mandiangin), Jl. Tahura Sultan Adam, Mandiangin, Kabupaten Banjar 70661, Kalimantan Selatan, Indonesia. (e) IRD/GAMET (Groupe aquaculture continentale méditerranéenne et tropicale), BP 5095, 34033 Montpellier cedex 1, France. Chapter V The artificial fertilization technique used for P. djambal is the dry method, i.e. the sperm is first spread over and mixed manually with collected ova. To increase the fertilization rate it is recommended to divide collected ova in small batches of 100 – 200 g (100 – 200 mL) in plastic bowls. For fertilization, 5 mL of diluted sperm are poured over one 100-g (100 mL) batch of ova, then mixed delicately with a feather until the sperm is homogenously spread in the ova mass (Plate V.1). Spermatozoa activation is triggered by addition of freshwater. The ratio generally used is 1 volume of freshwater for 1 volume of ova. -
Dinosaur Incubation Periods Directly Determined from Growth-Line Counts in Embryonic Teeth Show Reptilian-Grade Development
Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development Gregory M. Ericksona,1, Darla K. Zelenitskyb, David Ian Kaya, and Mark A. Norellc aDepartment of Biological Science, Florida State University, Tallahassee, FL 32306-4295; bDepartment of Geoscience, University of Calgary, Calgary, AB, Canada T2N 1N4; and cDivision of Paleontology, American Museum of Natural History, New York, NY 10024 Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved December 1, 2016 (received for review August 17, 2016) Birds stand out from other egg-laying amniotes by producing anatomical, behavioral and eggshell attributes of birds related to relatively small numbers of large eggs with very short incubation reproduction [e.g., medullary bone (32), brooding (33–36), egg- periods (average 11–85 d). This aspect promotes high survivorship shell with multiple structural layers (37, 38), pigmented eggs (39), by limiting exposure to predation and environmental perturba- asymmetric eggs (19, 40, 41), and monoautochronic egg pro- tion, allows for larger more fit young, and facilitates rapid attain- duction (19, 40)] trace back to their dinosaurian ancestry (42). For ment of adult size. Birds are living dinosaurs; their rapid development such reasons, rapid avian incubation has generally been assumed has been considered to reflect the primitive dinosaurian condition. throughout Dinosauria (43–45). Here, nonavian dinosaurian incubation periods in both small and Incubation period estimates using regressions of typical avian large ornithischian taxa are empirically determined through growth- values relative to egg mass range from 45 to 80 d across the line counts in embryonic teeth. -
Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina. -
Make a DIY Dinosaur Egg (PDF)
Science at Home Are you looking for something to do to keep your brain active and engaged? We’re here to help with Science at Home! You can do these fun science activities using commonly found items. You can also visit us at the Museum’s Science at Home page for additional resources. Make a DIY Dinosaur Egg Materials Needed: Start Here to Learn More! Balloons Wooden mixing spoon Dinosaur eggs are rarely fossilized, so whenever Newspaper or other thin paper A plate or place-mat we find one, it’s a big deal. 1 cup water Optional 1 cup all-purpose flour Acrylic paint and brushes to decorate your egg Paleontologists have found eggs from all dif- Mixing bowl ferent types of dinosaurs, like the duck-billed Maiasaura, the theropod Oviraptor, and even the massive titanosaur sauropods. These dif- ferent types of dinosaurs laid different types of Instructions: eggs and we can use things like shape, size and texture to identify which laid which. Each of these types of egg are referred to as an ootaxon, which is just a fancy way of saying “a group of similarly unique eggs.” Today, with the help of a grown-up, you’re going to learn how to make your own dinosaur eggs using a balloon, some flour, water and old newspaper. Step 1: Inflate your balloon and Step 2: Cut up your newspa- Step 3: Put a cup of flour into a tie it off. Dinosaur eggs came per into strips. You’re going to bowl, and mix in a cup of water. -
The First Dinosaur Egg Remains a Mystery
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.406678; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The first dinosaur egg remains a mystery 2 3 Lucas J. Legendre1*, David Rubilar-Rogers2, Alexander O. Vargas3, and Julia A. 4 Clarke1* 5 6 1Department of Geological Sciences, University of Texas at Austin, Austin, Texas 78756, 7 USA. 8 2Área Paleontología, Museo Nacional de Historia Natural, Casilla 787, Santiago, Chile. 9 3Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, 10 Chile. 11 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.406678; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 A recent study by Norell et al. (2020) described new egg specimens for two dinosaur species, 14 identified as the first soft-shelled dinosaur eggs. The authors used phylogenetic comparative 15 methods to reconstruct eggshell type in a sample of reptiles, and identified the eggs of 16 dinosaurs and archosaurs as ancestrally soft-shelled, with three independent acquisitions of a 17 hard eggshell among dinosaurs. This result contradicts previous hypotheses of hard-shelled 18 eggs as ancestral to archosaurs and dinosaurs. -
Temperature, Nest Humidity, and Behavioral Thermoregulation in a Hot Environment
(ISBN: 0-943610-30-3) AVIAN INCUBATION: EGG TEMPERATURE, NEST HUMIDITY, AND BEHAVIORAL THERMOREGULATION IN A HOT ENVIRONMENT BY GILBERT S. GRANT Departmentof Biology,University of California, Los Angeles ORNITHOLOGICAL MONOGRAPHS NO. 30 PUBLISHED BY THE AMERICAN ORNITHOLOGISTS' UNION WASHINGTON, D.C. 1982 AVIAN INCUBATION: EGG TEMPERATURE, NEST HUMIDITY, AND BEHAVIORAL THERMOREGULATION IN A HOT ENVIRONMENT ORNITHOLOGICAL MONOGRAPHS This series, publishedby the American Ornithologists'Union, has been estab- lished for major paperstoo long for inclusionin the Union's journal, The Auk. Publicationhas been made possible through the generosity of thelate Mrs. Carll Tucker and the Marcia Brady Tucker Foundation, Inc. Correspondenceconcerning manuscriptsfor publication in the series should be addressedto the Editor, Dr. Mercedes S. Foster, USFWS, NHB-378, National Museum of Natural History, Washington, D.C. 20560. Copies of Ornithological Monographs may be ordered from the Assistant to the Treasurer of the AOU, Glen E. Woolfenden, Department of Biology, Uni- versity of South Florida, Tampa, Florida 33620. (See price list on back and in- side back cover.) Ornithological Monographs, No. 30, ix + 75 pp. Editor of AOU Monographs, Mercedes S. Foster Special Reviewers for this issue, Cynthia Carey, Department of Environ- mental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado; Donald F. Hoyt, Department of Biological Sci- ences,California State PolytechnicUniversity, Pomona, California; S. Charles Kendeigh, Department -
Dinosaurs Put All Colored Birds' Eggs in One Basket, Evolutionarily Speaking 31 October 2018
Dinosaurs put all colored birds' eggs in one basket, evolutionarily speaking 31 October 2018 red and blue, to create all of the various egg colors, spots, and speckles. Wiemann and her colleagues analyzed 18 fossil dinosaur eggshell samples from around the world, using non-destructive laser microspectroscopy to test for the presence of the two eggshell pigments. They found them in eggshells belonging to Eumaniraptoran dinosaurs, which include small, carnivorous dinosaurs such as Velociraptor. Fossil theropod dinosaur egg (front), with corvid eggs in a nest. Fossil Deinonychus and oviraptor eggs were probably similar in coloration to corvid eggs. Credit: Jasmina Wiemann/Yale University A new study says the colors found in modern birds' eggs did not evolve independently, as previously thought, but evolved instead from dinosaurs. Illustration of a hatching Deinonychus chick from a blue According to researchers at Yale, the American egg with brown spots. The diversity researchers Museum of Natural History, and the University of recovered for dinosaur egg colors mirrors that found for Bonn, birds inherited their egg color from non- modern bird eggs. Credit: Jasmina Wiemann/Yale avian dinosaur ancestors that laid eggs in fully or University partially open nests. The researchers' findings appear Oct. 31 in the online edition of the journal Nature. "We infer that egg color co-evolved with open "This completely changes our understanding of nesting habits in dinosaurs," Wiemann said. "Once how egg colors evolved," said the study's lead dinosaurs started to build open nests, exposure of author, Yale paleontologist Jasmina Wiemann. the eggs to visually hunting predators and even "For two centuries, ornithologists assumed that nesting parasites favored the evolution of egg color appeared in modern birds' eggs multiple camouflaging egg colors, and individually times, independently." recognizable patterns of spots and speckles." The egg colors of birds reflect characteristic preferences in nesting environments and brooding behaviors. -
Geographic Variation in Avian Incubation Periods and Parental Influences on Embryonic Temperature
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2007.00204.x GEOGRAPHIC VARIATION IN AVIAN INCUBATION PERIODS AND PARENTAL INFLUENCES ON EMBRYONIC TEMPERATURE Thomas E. Martin,1,2 Sonya K. Auer,1,3,4 Ronald D. Bassar,1,3,5 Alina M. Niklison,1,6 and Penn Lloyd1,7 1United States Geological Survey Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59812 2E-mail: [email protected] 4E-mail: [email protected] 5E-mail: [email protected] 6E-mail: [email protected] 7Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa E-mail: [email protected] Received March 1, 2007 Accepted June 13, 2007 Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incu- bation periods independent of nest predation risk or body size.