Radiation Force As a Physical Mechanism for Ultrasonic Neurostimulation of the Ex Vivo Retina

Total Page:16

File Type:pdf, Size:1020Kb

Radiation Force As a Physical Mechanism for Ultrasonic Neurostimulation of the Ex Vivo Retina This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Systems/Circuits Radiation force as a physical mechanism for ultrasonic neurostimulation of the ex vivo retina Mike D. Menz1, Patrick Ye2, Kamyar Firouzi3, Amin Nikoozadeh3, Kim Butts Pauly4, Pierre Khuri-Yakub5 and Stephen A. Baccus1 1Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA 2Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA 3E. L. Ginzton Laboratory, Stanford University, Stanford, CA, 94305, USA 4Department of Radiology, Stanford University, Stanford, CA, 94305, USA 5Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA https://doi.org/10.1523/JNEUROSCI.2394-18.2019 Received: 17 September 2018 Revised: 23 May 2019 Accepted: 30 May 2019 Published: 13 June 2019 Author contributions: M.D.M., P.Y., A.N., K.P., P.T.K.-Y., and S.A.B. designed research; M.D.M., P.Y., and A.N. performed research; M.D.M. and K.F. analyzed data; M.D.M. wrote the first draft of the paper; M.D.M. and S.A.B. edited the paper; M.D.M. and S.A.B. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. This work was supported by a grant from the NIBIB and the Stanford Neurosciences Institute. We thank M. Maduke, M. Prieto, J. Kubanek, D. Palanker and J. Brown for helpful discussions. Corresponding and Submitting author: Mike D. Menz, [email protected], Stanford University, Fairchild Bldg., 299 Campus Dr. W, Stanford, CA, 94305-5101, USA Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.2394-18.2019 Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2019 the authors 1 Radiation force as a physical mechanism for ultrasonic 2 neurostimulation of the ex vivo retina 3 Abbrev. Title: Ultrasound stimulates retina by radiation force 4 Mike D. Menz1, Patrick Ye2, Kamyar Firouzi3, Amin Nikoozadeh3, Kim Butts Pauly4, Pierre 5 Khuri-Yakub5, Stephen A. Baccus1 6 7 1Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, 8 USA 9 2Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA 10 3E. L. Ginzton Laboratory, Stanford University, Stanford, CA, 94305, USA 11 4Department of Radiology, Stanford University, Stanford, CA, 94305, USA 12 5Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA 13 Corresponding and Submitting author: Mike D. Menz, [email protected], Stanford 14 University, Fairchild Bldg., 299 Campus Dr. W, Stanford, CA, 94305-5101, USA 15 16 Paper statistics (based on clean copy): 58 total pages, 48 pages of text, 10 figures, 1 movie 17 #Words: Abstract = 246, Introduction = 537, Significance statement = 109, Discussion = 2668 18 19 Acknowledgements: This work was supported by a grant from the NIBIB and the Stanford 20 Neurosciences Institute. We thank M. Maduke, M. Prieto, J. Kubanek, D. Palanker and J. Brown 21 for helpful discussions. 22 Conflict of Interest: The authors will be listed as inventors on a provisional patent application 23 for a PIRF neural stimulator effective once the paper is accepted for publication. 1 24 25 Abstract 26 Focused ultrasound has been shown to be effective at stimulating neurons in many animal 27 models, both in vivo and ex vivo. Ultrasonic neuromodulation is the only non-invasive 28 method of stimulation that could reach deep in the brain with high spatial-temporal 29 resolution, and thus has potential for use in clinical applications and basic studies of the 30 nervous system. Understanding the physical mechanism by which energy in a high acoustic 31 frequency wave is delivered to stimulate neurons will be important to optimize this 32 technology. We imaged the isolated salamander retina of either sex during ultrasonic 33 stimuli that drive ganglion cell activity and observed micron scale displacements, consistent 34 with radiation force, the nonlinear delivery of momentum by a propagating wave. We 35 recorded ganglion cell spiking activity and changed the acoustic carrier frequency across a 36 broad range (0.5 - 43 MHz), finding that increased stimulation occurs at higher acoustic 37 frequencies, ruling out cavitation as an alternative possible mechanism. A quantitative 38 radiation force model can explain retinal responses and could potentially explain previous 39 in vivo results in the mouse, suggesting a new hypothesis to be tested in vivo. Finally, we 40 found that neural activity was strongly modulated by the distance between the transducer 41 and the electrode array showing the influence of standing waves on the response. We 42 conclude that radiation force is the dominant physical mechanism underlying ultrasonic 43 neurostimulation in the ex vivo retina and propose that the control of standing waves is a 44 new potential method to modulate these effects. 45 46 Significance Statement 2 47 Ultrasonic neurostimulation is a promising noninvasive technology that has potential for both 48 basic research and clinical applications. The mechanisms of ultrasonic neurostimulation are 49 unknown, making it difficult to optimize in any given application. We studied the physical 50 mechanism by which ultrasound is converted into an effective energy form to cause 51 neurostimulation in the retina and find that ultrasound acts through radiation force leading to a 52 mechanical displacement of tissue. We further show that standing waves have a strong 53 modulatory effect on activity. Our quantitative model by which ultrasound generates radiation 54 force and leads to neural activity will be important in optimizing ultrasonic neurostimulation 55 across a wide range of applications. 56 57 Introduction 58 Ultrasonic neuromodulation has been demonstrated in the brains of human (Lee et al., 2015; 59 2016a; Legon et al., 2014; Monti et al., 2016), monkey (Wattiez et al., 2017; Deffieux et al., 60 2013), sheep (Lee et al., 2016b), rat (Younan et al., 2013), mouse (Li et al., 2016; Ye et al., 2016; 61 King et al., 2014; King et al., 2012; Tufail et al., 2010; Tyler et al., 2008), and retina of 62 salamander (Menz et al., 2013) and rat (Jiang et al., 2018). The capability of ultrasound to reach 63 any brain structure noninvasively through the skull, and the highly developed technology to 64 deliver ultrasound make this approach promising both for basic studies of neural function and 65 clinical applications. Yet results in different preparations have varied, including both excitatory 66 and inhibitory effects. The development of this approach would benefit greatly from a 67 quantitative understanding of the mechanisms of ultrasonic neuromodulation, allowing the 68 process to be optimized in terms of efficacy of stimuli, efficiency and spatiotemporal distribution 69 of effects. 3 70 71 In the process of transduction of a stimulus into a biological response, one can distinguish the 72 physical mechanism such as acoustic pressure or thermal energy from the biophysical 73 mechanism that senses that energy, including changes in membrane capacitance or particular 74 ionic channels. Here we focus on the physical mechanism by which an acoustic wave is 75 converted into an effective stimulus for a neuron, a process that is currently not understood. The 76 leading candidates for physical mechanism are radiation pressure, the process by which an 77 absorbed or reflected wave delivers momentum, and cavitation, which includes the stable or 78 unstable formation of bubbles, creating a mechanical disturbance, and thermal energy. 79 80 Radiation force is a nonlinear effect proportional to the acoustic wave amplitude, thus creating a 81 continuous, non-oscillating force for a stimulus of constant amplitude (Rudenko et al., 1996). By 82 this mechanism a carrier wave with a frequency too high to have a direct biological effect can be 83 converted into a low frequency mechanical force with dynamics of the envelope of the wave. 84 When radiation force is exerted on a liquid, this results in bulk flow of fluid known as acoustic 85 streaming. Tissue attenuation increases with carrier frequency, therefore radiation force and also 86 heating will increase with frequency. 87 88 Cavitation can occur if the acoustic pressure wave becomes sufficiently negative, causing gas 89 bubbles to form that oscillate at the carrier frequency (Nightingale et al., 2015). Inertial 90 cavitation occurs when those oscillations change in size and eventually burst the bubble, creating 91 a destructive violent event. In stable cavitation the bubble does not burst and is hypothesized to 4 92 produce safe neuromodulation. Cavitation is less likely at higher carrier frequencies because it 93 becomes more difficult to sustain oscillations in the bubble. 94 95 In this study we use optical imaging to measure displacements in the retina and vary the acoustic 96 frequency to test which of these mechanisms is most likely. We find that ultrasonic stimulation 97 in the retina is consistent with a model whereby radiation force produced micron-scale 98 mechanical displacements. The acoustic frequency dependence is consistent with radiation force 99 but inconsistent with cavitation. In addition, we see that standing waves influence the effects of 100 ultrasound. We conclude that radiation force is the primary physical mechanism for ultrasound to 101 stimulate the retina. 102 103 Materials & Methods 104 Experimental Design and Statistical Analysis 105 We conducted several different types of experiments for the purpose of established whether 106 radiation force is the dominant physical mechanism responsible for ultrasonic neurostimulation, 107 the details of these experiments are described below in the appropriate sub-sections. In terms of 108 experimental design, our goal is to use at least two retinas from two different salamanders and 109 record from at least 30 ganglion cells for electrophysiology experiments.
Recommended publications
  • Neuropeptide Y1 Receptor Antagonist but Not Neuropeptide Y Itself Increased Bone Mineral Density When Locally Injected with Hyaluronic Acid in Male Wistar Rats
    Turkish Journal of Medical Sciences Turk J Med Sci (2020) 50: 1454-1460 http://journals.tubitak.gov.tr/medical/ © TÜBİTAK Research Article doi:10.3906/sag-2001-268 Neuropeptide Y1 receptor antagonist but not neuropeptide Y itself increased bone mineral density when locally injected with hyaluronic acid in male Wistar rats 1, 2 3 Muhammer Özgür ÇEVİK *, Petek KORKUSUZ , Feza KORKUSUZ 1 Department of Medical Genetics, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey 2 Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey 3 Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey Received: 31.01.2020 Accepted/Published Online: 19.05.2020 Final Version: 26.08.2020 Background/aim: The nervous system controls bone mass via both the central (CNS) and the peripheral (PNS) nervous systems. Intriguingly, neuropeptide Y (NPY) signaling occurs in both. Less is known on how the PNS stimulated NPY signaling controls bone metabolism. The objective of this study was to evaluate whether NPY or NPY1 receptor antagonist changes local bone mineral density (BMD) when injected into a Wistar rat tibia. Materials and methods: Tibial intramedullary area of 24 wild type male Wistar rats (average weight = 350 ± 50 g, average age = 4 ± 0.5 months) were injected with NPY (1 × 10-5 M and 1 × 10-6 M) and NPY1 receptor antagonist (1 × 10-4 M) dissolved in hyaluronic acid (HA) separately. Tibiae were collected after one and two weeks. BMD was measured with dual-energy X-ray absorptiometry (DXA) and micro quantitative computer tomography (QCT). Histological changes were analyzed with light microscopy, Goldner's Masson trichrome (MT), and hematoxylin-eosin staining.
    [Show full text]
  • Mechanosensitivity and Mechanotransduction Series: Mechanosensitivity in Cells and Tissues, Vol
    A. Kamkin, I. Kiseleva (Eds.) Mechanosensitivity and Mechanotransduction Series: Mechanosensitivity in Cells and Tissues, Vol. 4 ▶ One book provides a detailed description of molecular mechanisms of mechanosensing and mechanotransduction in different cells ▶ One book brings together a comprehensive outline of modern vision of structure and functions of cytoskeleton ▶ Provides a wide and detailed description of various signaling pathways This book presents the latest findings in the field of research of mechanosensitivity and mechanotransduction in different cells and tissues. Mechanosensitivity and mechanotransduction of the heart and vascular cells, in the lung, in bone and joint tissues, in sensor systems and in blood cells are described in detail. This Volume focuses on molecular mechanisms 2011, XXIV, 371 p. of mechanosensitivity and mechanotransduction via cytoskeleton. Integrin-mediated mechanotransduction, the role of actin cytoskeleton and the role of other cytoskeletal elements are discussed. It contains a detailed description of several stretch-induced Printed book signaling cascades with multiple levels of crosstalk between different pathways. It Hardcover contains a description of the role of nitric oxide in regulation of cardiac activity and in ISBN 978-90-481-9880-1 regulation of mechanically gated channels in the heart. In the heart mechanical signals are propagated into the intracellular space primarily via integrin-linked complexes, ▶ 219,99 € | £199.99 and are subsequently transmitted from cell to cell via paracrine signaling. Biochemical ▶ *235,39 € (D) | 241,99 € (A) | CHF 259.50 signals derived from mechanical stimuli activate both acute phosphorylation of signaling cascades, such as in the PI3K, FAK, and ILK pathways, and long-term morphological modii cations via intracellular cytoskeletal reorganization and extracellular matrix remodelling.
    [Show full text]
  • Auditory and Visual System White Matter Is Differentially Impacted by Normative Aging in Macaques
    The Journal of Neuroscience, November 11, 2020 • 40(46):8913–8923 • 8913 Behavioral/Cognitive Auditory and Visual System White Matter Is Differentially Impacted by Normative Aging in Macaques Daniel T. Gray,1,2 Nicole M. De La Peña,1,2 Lavanya Umapathy,3 Sara N. Burke,4 James R. Engle,1,2 Theodore P. Trouard,2,5 and Carol A. Barnes1,2,6 1Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724, 2Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724, 3Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85724, 4Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, Florida 32609, 5Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, and 6Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, Arizona 85724 Deficits in auditory and visual processing are commonly encountered by older individuals. In addition to the relatively well described age-associated pathologies that reduce sensory processing at the level of the cochlea and eye, multiple changes occur along the ascending auditory and visual pathways that further reduce sensory function in each domain. One fundamen- tal question that remains to be directly addressed is whether the structure and function of the central auditory and visual systems follow similar trajectories across the lifespan or sustain the impacts of brain aging independently. The present study used diffusion magnetic resonance imaging and electrophysiological assessments of auditory and visual system function in adult and aged macaques to better understand how age-related changes in white matter connectivity at multiple levels of each sensory system might impact auditory and visual function.
    [Show full text]
  • Regulatory Networks in Mechanotransduction Reveal Key Genes in Promoting Cancer Cell Stemness and Proliferation
    Oncogene (2019) 38:6818–6834 https://doi.org/10.1038/s41388-019-0925-0 ARTICLE Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation 1 2 2 1 3 3 1 3,4 Wei Huang ● Hui Hu ● Qiong Zhang ● Xian Wu ● Fuxiang Wei ● Fang Yang ● Lu Gan ● Ning Wang ● 1 2 Xiangliang Yang ● An-Yuan Guo Received: 16 January 2019 / Revised: 21 June 2019 / Accepted: 8 July 2019 / Published online: 12 August 2019 © The Author(s) 2019. This article is published with open access Abstract Tumor-repopulating cells (TRCs) are cancer stem cell (CSC)-like cells with highly tumorigenic and self-renewing abilities, which were selected from tumor cells in soft three-dimensional (3D) fibrin gels with unidentified mechanisms. Here we evaluated the transcriptome alteration during TRCs generation in 3D culture and revealed that a variety of molecules related with integrin/membrane and stemness were continuously altered by mechanical environment. Some key regulators such as MYC/STAT3/hsa-miR-199a-5p, were changed in the TRCs generation. They regulated membrane genes and the downstream mechanotransduction pathways such as Hippo/WNT/TGF-β/PI3K-AKT pathways, thus 1234567890();,: 1234567890();,: further affecting the expression of downstream cancer-related genes. By integrating networks for membrane proteins, the WNT pathway and cancer-related genes, we identified key molecules in the selection of TRCs, such as ATF4, SLC3A2, CCT3, and hsa-miR-199a-5p. Silencing ATF4 or CCT3 inhibited the selection and growth of TRCs whereas reduction of SLC3A2 or hsa-miR-199a-5p promoted TRCs growth. Further studies showed that CCT3 promoted cell proliferation and stemness in vitro, while its suppression inhibited TRCs-induced tumor formation.
    [Show full text]
  • Integrin Signaling Revisited
    466 Review TRENDS in Cell Biology Vol.11 No.12 December 2001 Integrin signaling revisited Martin A. Schwartz Adhesion to the extracellular matrix (ECM) is a crucial regulator of cell function, appear to be downstream of FAK and to contribute to and it is now well established that signaling by integrins mediates many of cell migration12,13. The adaptor protein p130cas also these effects. Ten years of research has seen integrin signaling advance on binds to FAK and has been linked to activation of the many fronts towards a molecular understanding of the control mechanisms. small GTPase Rac to promote motility. This diversity of Most striking is the merger with studies of other receptors, the cytoskeleton downstream pathways that converge on cell migration and mechanical forces within the general field of signaling networks. suggests that FAK is a central coordinator of this process. FAK has also been implicated in cell-cycle When I wrote a Trends in Cell Biology review on regulation through activation of both the Erk and integrin signaling in 19921, a 3000-word article could JNK pathways. And FAK plays an important role in cover the entire subject without omitting any key mediating integrin-dependent cell survival, possibly references. In the year 2000 alone, a literature search through phosphoinositide (PI) 3-kinase or JNK7,8,14,15. on ‘integrin’ plus ‘signal transduction’ yielded 480 Multiple physical associations of FAK with references. Given the impossibility of covering more other signaling molecules appear to mediate these than a sliver of what’s been written, I have chosen to multiple effector pathways.
    [Show full text]
  • Wound Mechanotransduction in Repair and Regeneration Victor W
    REVIEW Pushing Back: Wound Mechanotransduction in Repair and Regeneration Victor W. Wong1, Satoshi Akaishi1, Michael T. Longaker1 and Geoffrey C. Gurtner1 Human skin is a highly specialized mechanorespon- These physical interactions regulate key developmental and sive interface separating our bodies from the external homeostatic mechanisms and underlie the tremendous environment. It must constantly adapt to dynamic functional plasticity of skin (Silver et al., 2003; Blanpain physical cues ranging from rapid expansion during and Fuchs, 2009). Although mechanical forces are implicated embryonic and early postnatal development to ubi- in the pathogenesis of numerous diseases (Ingber, 2003a), quitous external forces throughout life. Despite the their role in cutaneous biology remains poorly understood. suspected role of the physical environment in However, the fundamental mechanisms responsible for cutaneous processes, the fundamental molecular mechanotransduction (the conversion of physical stimuli into mechanisms responsible for how skin responds to biochemical responses) are increasingly being elucidated on force remain unclear. Intracellular pathways convert molecular and cellular levels (Ingber, 2006). The ongoing challenge for researchers and clinicians is to fully understand mechanical cues into biochemical responses (in a these mechanotransduction pathways in living organs so that process known as mechanotransduction) via complex they can be translated into clinical therapies. mechanoresponsive elements that often blur the In 1861, the German anatomist Karl Langer published the distinction between physical and chemical signaling. observation that skin exhibits intrinsic tension (Langer K, For example, cellular focal adhesion components 1978), a finding he attributed to the French surgeon Baron exhibit dual biochemical and scaffolding functions Guillaume Dupuytren. Since then, surgeons have adhered to that are critically modulated by force.
    [Show full text]
  • XTRACT - Standardised Protocols for Automated Tractography in the Human and Macaque Brain”
    Supplementary Materials for “XTRACT - Standardised protocols for automated tractography in the human and macaque brain” Warrington S1, Bryant KL2,3, Khrapitchev AA4, Sallet J5, Charquero-Ballester M6, Douaud G3, Jbabdi S3*, Mars RB2,3*, Sotiropoulos SN1,3,7* 1Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK 2Donders Institute for Brain, Cognition, & Behaviour, Radboud University NiJmegen, NiJmegen, Netherlands 3FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK 4CRUK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK 5Wellcome Centre for Integrative Neuroimaging - Department of Experimental Psychology, University of Oxford, UK 6Department of Psychiatry, University of Oxford, UK 7National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK *Equal contribution Corresponding author: Stamatios Sotiropoulos ([email protected]) Thiebaut de Wakana1 Catani2 Hua3 Zhang4 Yendiki6 de Groot7 Wassermann8 Tract Schotten5 (N=4) (N=12) (N=28) (N=10) (N=67) (N=60) (N=97) (N=40) Acoustic Radiation P Anterior Commissure P P Anterior Thalamic P P P P P Radiation P (Arcuate and Arcuate Fasciculus P anterior, long P and posterior segments) Cingulum subsection: P P P P P Dorsal Cingulum subsection: P P P P P P P P Peri-genual Cingulum subsection: Temporal P (Rostrum, rostral Corpus Collosum
    [Show full text]
  • Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention
    fnins-14-00675 July 14, 2020 Time: 17:3 # 1 REVIEW published: 14 July 2020 doi: 10.3389/fnins.2020.00675 Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention Jeffrey B. Wang†, Tommaso Di Ianni†, Daivik B. Vyas, Zhenbo Huang, Sunmee Park, Niloufar Hosseini-Nassab, Muna Aryal and Raag D. Airan* Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States A long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimeter and millisecond resolution to any point in the human brain with Food and Drug Administration-approved hardware. Although Edited by: FUS is clinically utilized primarily for focal ablation in conditions such as essential tremor, Victor Frenkel, recent breakthroughs have enabled the use of FUS for drug delivery at lower intensities University of Maryland, Baltimore, (i.e., tens of watts per square centimeter) without ablation of the tissue. In this review, we United States present strategies for image-guided FUS-mediated pharmacologic neurointerventions. Reviewed by: Vassiliy Tsytsarev, First, we discuss blood–brain barrier opening to deliver therapeutic agents of a variety University of Maryland, College Park, of sizes to the central nervous system. We then describe the use of ultrasound-sensitive United States Graeme F. Woodworth, nanoparticles to noninvasively deliver small molecules to millimeter-sized structures University of Maryland, Baltimore, including superficial cortical regions and deep gray matter regions within the brain United States without the need for blood–brain barrier opening.
    [Show full text]
  • Effects of Estrogen Receptor and Wnt Signaling Activation On
    International Journal of Molecular Sciences Article Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss 1, , 1, 1 1 Astrid Liedert * y, Claudia Nemitz y, Melanie Haffner-Luntzer , Fabian Schick , Franz Jakob 2 and Anita Ignatius 1 1 Institute of Orhopedic Research and Biomechanics, Trauma Research Center Ulm, University Medical Center Ulm, 89081 Ulm, Germany; [email protected] (C.N.); melanie.haff[email protected] (M.H.-L.); [email protected] (F.S.); [email protected] (A.I.) 2 Orthopaedic Center for Musculoskeletal Research, University of Würzburg, 97074 Würzburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-731-500-55333; Fax: +49-731-500-55302 These authors contributed equally to the study. y Received: 14 September 2020; Accepted: 31 October 2020; Published: 5 November 2020 Abstract: In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss.
    [Show full text]
  • Mechanostasis in Apoptosis and Medicine
    Progress in Biophysics and Molecular Biology 106 (2011) 517e524 Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Review Mechanostasis in apoptosis and medicine D.D. Chan a,1, W.S. Van Dyke a, M. Bahls b, S.D. Connell a, P. Critser a, J.E. Kelleher c, M.A. Kramer a, S.M. Pearce a, S. Sharma a, C.P. Neu a,* a Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States b Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, United States c School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States article info abstract Article history: Mechanostasis describes a complex and dynamic process where cells maintain equilibrium in response Available online 8 August 2011 to mechanical forces. Normal physiological loading modes and magnitudes contribute to cell prolifera- tion, tissue growth, differentiation and development. However, cell responses to abnormal forces include Keywords: compensatory apoptotic mechanisms that may contribute to the development of tissue disease and Apoptosis pathological conditions. Mechanotransduction mechanisms tightly regulate the cell response through Programmed cell death discrete signaling pathways. Here, we provide an overview of links between pro- and anti-apoptotic Mechanobiology signaling and mechanotransduction signaling pathways, and identify potential clinical applications for Shear stress/strain Mechanotransduction treatments of disease by exploiting mechanically-linked apoptotic pathways. Ó Homeostasis 2011 Elsevier Ltd. All rights reserved. Contents 1. Introduction . .................................................517 2. Mechanostasis: tissues adapt to physical cues . ....................................518 3. Programmed cell death . .................................................519 4. Mechanotransduction and apoptosis . ............................................519 4.1.
    [Show full text]
  • Mechanotransduction in Collective Cell Migration
    RESEARCH HIGHLIGHTS Fasting promotes HSC cancer patients adopting prolonged fasting centrosomes may affect tumorigenesis. God- function within a phase I clinical trial. These positive inho, Pellman and colleagues have revealed effects of prolonged fasting were independent that supernumerary centrosomes confer an Prolonged fasting activates a metabolic switch of the chemotherapy treatment, as they were invasive behaviour to epithelial cells in 3D to lipid- and ketone-based catabolism and also present in aged animals, which naturally culture, through a mechanism involving Rac1 decreases circulating insulin-like growth exhibit a reduction in HSC function and multi- activation (Nature 510, 167–171; 2014). factor-1 (IGF-1), which has been shown to lineage potential. The effects of prolonged fast- Overexpression of polo-like kinase 4 (Plk4) reduce chemotoxicity, although the reasons ing could be reproduced in mice lacking the was used to induce centrosome amplifica- behind this effect are unclear. Myelosup- growth hormone receptor, which also have low tion in the epithelial cell line MCF10A. pression is a side effect of chemotherapy, and levels of IGF-1. Transplantation experiments The authors observed that this resulted in Longo and colleagues have now discovered showed that low levels of IFG-1 in animals led invasive protrusions in 3D culture and col- that the positive effects of prolonged fasting to a reduction in IGF-1-mediated PKA signal- lective migration in an organotypic culture can partly be attributed to improved haemat- ling, both in haematopoietic cells and in asso- system. Centrosome amplification is known opoietic stem cell (HSC) function (Cell Stem ciated stromal cells. Strikingly, the research- to lead to chromosome missegregation and Cell 6, 810–823; 2014).
    [Show full text]
  • Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act As Important Regulators of Lymphatic Development and Function
    International Journal of Molecular Sciences Review Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function László Bálint and Zoltán Jakus * Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; [email protected] * Correspondence: [email protected] Abstract: Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the en- dothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and sum- marize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosen- sitive pathways affect endothelial cell fate and regulate lymphatic development and function. A Citation: Bálint, L.; Jakus, Z. Mechanosensation and better understanding of these mechanisms may provide a deeper insight into the pathophysiology Mechanotransduction by Lymphatic of various diseases associated with impaired lymphatic function, such as lymphedema and may Endothelial Cells Act as Important eventually lead to the discovery of novel therapeutic targets for these conditions. Regulators of Lymphatic Development and Function. Int. J. Keywords: lymphatics; lymphatic development; lymphatic function; mechanical forces; mechanosen- Mol.
    [Show full text]