Novel Functional Sequences Uncovered Through a Bovine Multi-Assembly Graph (Version 1.0) [Dataset]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Livestock Genomics Comes of Age Michel Georges and Leif Anclersson 2
Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Livestock Genomics Comes of Age Michel Georges and Leif Anclersson 2 1Department of Genetics, Faculty of Veterinary Medicine, University of Liege, 4000-Liege, Belgium; 2Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, 24 Uppsala, Sweden It is estimated that man 1 first domesticated ani- as by an undefined number of polygenes or quan- mals as early as 10,000 BP. Since then, farmers titative trait loci (QTL). Their heritabilities typi- have been unwittingly manipulating livestock cally range from less than 5% to over 50%. Ani- genes by selective breeding. This early genetic en- mal geneticists therefore have had a long-stand- gineering generated a wealth of variation for a ing interest in the genetics of complex inherit- myriad of traits in the different livestock species. ance, the relevance of which is being recognized The dramatic size difference between the Shire increasingly in medical genetics as well. and Shetland pony or the plethora of dog breeds The implementation of breeding schemes are just two illustrations of the diversification ob- that proved so efficient would have been impos- tained by artificial selection. The resulting carica- sible without the organization of extensive phe- ture of naturally occurring variation has played a notypic record keeping. Particularly illustrative major role in Darwin's formalization of his in this respect is the collection of individual re- theory of the evolution of species by natural se- cords (milk yield and composition, type traits, lection. -
Genomic Divergence of Zebu and Taurine Cattle Identified Through High-Density SNP Genotyping
Porto-Neto et al. BMC Genomics 2013, 14:876 http://www.biomedcentral.com/1471-2164/14/876 RESEARCH ARTICLE Open Access Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping Laercio R Porto-Neto1,2,6*, Tad S Sonstegard3*, George E Liu3, Derek M Bickhart3, Marcos VB Da Silva5, Marco A Machado5, Yuri T Utsunomiya4, Jose F Garcia4, Cedric Gondro2 and Curtis P Van Tassell3 Abstract Background: Natural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds. Results: Each cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of do- mestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candi- date genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types. -
The Genome Sequence of Taurine Cattle: a Window to Ruminant Biology and Evolution the Bovine Genome Sequencing and Analysis Consortium, Christine G
REPORTS second model, the two main conditions were para- different issues. In particular, Bhatt and Camerer found 34. W. Seeley et al., J. Neurosci. 27, 2349 (2007). metrically modulated by the two categories, higher insula and ACC activity when comparing choices to 35. J. Downar, A. Crawley, D. Mikulis, K. Davis, Nat. Neurosci. first-order beliefs in dominance-solvable games. 3, 277 (2000). respectively (SOM, S5.1). The activation of the 3. We are considering here coordination without visual or 36. J. Downar, A. Crawley, D. Mikulis, K. Davis, J. Neurophysiol. precuneus was higher for hard dominance-solvable other contact. Nonhuman primates seem able to 87, 615 (2002). games than for easy ones (Fig. 4A and table S10). coordinate their actions (simultaneously pulling on bars 37. K. Davis et al., J. Neurosci. 25, 8402 (2005). The activation of the insula was higher for the to obtain food) when they are in visual contact (45). 38. K. Taylor, D. Seminowicz, K. Davis, Hum. Brain Mapp., 4. J. Mehta, C. Starmer, R. Sugden, Am. Econ. Rev. 84, 658 in press; published online 15 December 2008; highly focal coordination games than for less fo- (1994). 10.1002/hbm.20705. cal ones (Fig. 4B and table S11). Previous studies 5. T. Schelling, J. Conflict Resolution 2, 203 (1958), p. 211. 39. See (47). The NCI can be interpreted as the probability also found that precuneus activity increased when 6. D. Kahneman, Am. Psychol. 58, 697 (2003). that two randomly chosen individuals make the same the number of planned moves increased (40, 41). 7. K. -
Bovinehd Genotyping Beadchip More Than 777,000 Snps That Deliver the Densest Coverage Available for the Bovine Genome
Data Sheet: Agrigenomics BovineHD Genotyping BeadChip More than 777,000 SNPs that deliver the densest coverage available for the bovine genome. of the markers are mapped to the UMD3 bovine genome assembly,3 Highlights which include coverage of autosomal, mitochondrial, and sex-linked • Comprehensive and Uniform Coverage (X/Y) SNPs. Uniform genomic coverage, with an average gap size Evenly distributed polymorphic SNPs with a median < 3 kb of 3.43 kb and a median gap size of 2.68 kb, provides excellent gap spacing SNP density to power robust genome-association studies and CNV detection in cattle (Figure 2).4 The BovineHD BeadChip is the most • Unrivaled Call Rates and Accuracy comprehensive tool in the Illumina portfolio of bovine products. > 99% average call rates and > 99.9% reproducibility • Simple Workflow More than 93% of SNPs featured on the BovineHD BeadChip target PCR- and ligation-free protocol novel SNP loci that were discovered by sequencing > 20 individual breeds of economically important beef and dairy cattle (Table 3). Using • High-Throughput Format Illumina next-generation paired-end sequencing technology, > 90% Up to 8 samples can be interrogated in parallel of the included SNPs were identified from over 180× coverage of the mappable Btt genome. Prioritization for SNP selection included the following parameters: 1) breed-specific expected MAF, 2) Infinium HD Introduction design score, 3) unmapped contig coverage, 4) breed weighting, 5) breed‐specific spacing, and 6) and position based on region of The BovineHD BeadChip (Figure 1) is the most comprehensive genome (ie, exon, repetitive, segmental duplication/CNV). genome-wide genotyping array, providing superior power to interrogate genetic variation across any breed of beef and dairy cattle. -
Characterisation of the Cattle, Buffalo and Chicken Populations in the Northern Vietnamese Province of Ha Giang Cécile Berthouly
Characterisation of the cattle, buffalo and chicken populations in the northern Vietnamese province of Ha Giang Cécile Berthouly To cite this version: Cécile Berthouly. Characterisation of the cattle, buffalo and chicken populations in the northern Vietnamese province of Ha Giang. Life Sciences [q-bio]. AgroParisTech, 2008. English. NNT : 2008AGPT0031. pastel-00003992 HAL Id: pastel-00003992 https://pastel.archives-ouvertes.fr/pastel-00003992 Submitted on 16 Jun 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agriculture, UFR Génétique, UMR 1236 Génétique Alimentation, Biologie, Biodiva project UR 22 Faune Sauvage Elevage et Reproduction et Diversité Animales Environnement, Santé Thesis to obtain the degree DOCTEUR D’AGROPARISTECH Field: Animal Genetics presented and defended by Cécile BERTHOULY on May 23rd, 2008 Characterisation of the cattle, buffalo and chicken populations in the Northern Vietnamese province of Ha Giang Supervisors: Jean-Charles MAILLARD and Etienne VERRIER Committee Steffen WEIGEND Senior scientist, Federal Agricultural -
Bovine Genomic Sequencing Initiative Cattle-Izing the Human Genome
Bovine Genomic Sequencing Initiative Cattle-izing the Human Genome Richard Gibbs and George Weinstock, Baylor College of Medicine, Human Genome Sequencing Center; Steven Kappes, USDA-ARS, US Meat Animal Research Center; Lawrence Schook, University of Illinois; Loren Skow and James Womack, Texas A&M University Rationale and Objective. Completion of the human genome sequence provides the starting point for understanding the genetic complexity of man and how genetic variation contributes to diverse phenotypes and disease. It is clear that model organisms have played an invaluable role in capturing this information. It is also noted that additional species must be sequenced to resolve the genetic complexity of human evolution and to effectively extrapolate genetic information from comparative (veterinary) medicine to human medicine. The selection of animals representing evolutionary clades distinct from primates or rodents provides considerable power for analysis of the human genomic sequence. The domesticated, eutherian mammals that have co-evolved with man (cows, pigs, dogs and cats), represent taxa with diverse selected phenotypes and have in place strong scientific and veterinary medical communities to support and utilize genome sequence information. Thus, this “white paper” provides support for sequencing the bovine genome (6X coverage) to identify new genes and novel regulatory elements in humans, mice and rats. The bovine genome will serve as a reference non-primate, non- rodent, eutherian genome. The bovine genome is uniquely positioned for genomic sequencing because of the advanced stage of the reagents. An international bovine BAC map with a 15X coverage will be fingerprinted and all fingerprinted clones end-sequenced by February 2003. A minimum tilling path of BAC clones will be sequenced with a whole genome shotgun sequencing effort using random insert libraries. -
Genetic Variation of Mitochondrial DNA Within Domestic Yak Populations J.F
Genetic variation of mitochondrial DNA within domestic yak populations J.F. Bailey,1 B. Healy,1 H. Jianlin,2 L. Sherchand,3 S.L. Pradhan,4 T. Tsendsuren,5 J.M. Foggin,6 C. Gaillard,7 D. Steane,8 I. Zakharov 9 and D.G. Bradley1 1. Department of Genetics, Trinity College, Dublin 2, Ireland 2. Department of Animal Science, Gansu Agricultural University, Lanzhou 730070, Gansu, P.R. China 3. Livestock Production Division, Department of Livestock Services, Harihar Bhawan, Pulchowk, Nepal 4. Resource Development Advisor, Nepal–Australia Community Resource Management Project, Kathmandu, Nepal 5. Institute of Biology, Academy of Sciences of Mongolia, Ulaan Baatar, Mongolia 6. Department of Biology, Arizona State University, Tempe, AZ 85287–1501 USA 7. Institute of Animal Breeding, University of Berne, Bremgarten-strasse 109a, CH-3012 Berne, Switzerland 8. FAO (Food and Agricultural Organization of the United Nations) Regional Office for Asia and the Pacific, 39 Phra Atit Road, Bangkok 10200, Thailand 9. Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkin str., 3, 117809 GSP-1, Moscow B-333, Russia Summary Yak (Bos grunniens) are members of the Artiodactyla, family Bovidae, genus Bos. Wild yak are first observed at Pleistocene levels of the fossil record. We believed that they, together with the closely related species of Bos taurus, B. indicus and Bison bison, resulted from a rapid radiation of the genus towards the end of the Miocene. Today domestic yak live a fragile existence in a harsh environment. Their fitness for this environment is vital to their survival and to the millions of pastoralists who depend upon them. -
Unlocking the Bovine Genome
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/24358846 Unlocking the Bovine Genome Article in BMC Genomics · May 2009 DOI: 10.1186/1471-2164-10-193 · Source: PubMed CITATIONS READS 48 142 6 authors, including: Ross L Tellam Danielle Lemay The Commonwealth Scientific and Industrial Research Organisation University of California, Davis 247 PUBLICATIONS 7,657 CITATIONS 148 PUBLICATIONS 3,445 CITATIONS SEE PROFILE SEE PROFILE Kim Carlyle Worley Baylor College of Medicine 411 PUBLICATIONS 86,467 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Vaccines against ticks and myiasis flies View project Milk and innate immunity View project All content following this page was uploaded by Danielle Lemay on 13 May 2014. The user has requested enhancement of the downloaded file. BMC Genomics BioMed Central Commentary Open Access Unlocking the bovine genome Ross L Tellam*1, Danielle G Lemay2, Curtis P Van Tassell3, Harris A Lewin4, Kim C Worley5 and Christine G Elsik6 Address: 1CSIRO Livestock Industries, 306 Carmody Rd, St Lucia 4067, QLD, Australia, 2Department of Food Science and Technology, University of California, One Shields Ave, Davis, CA 95616, USA, 3Bovine Functional Genomics laboratory, USDA/ARS, BARC-East, Beltsville, MD, 20705, USA, 4Institute for Genomic Biology and Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, 5Human Genome Sequencing Center, Department of Molecular -
Aurochs Genetics, a Cornerstone of European Biodiversity
Aurochs genetics, a cornerstone of European biodiversity Picture: Manolo Uno (c) Staffan Widstrand Authors: • drs. Ronald Goderie (Taurus Foundation); • dr. Johannes A. Lenstra (Utrecht University, Faculty of Veterinary Medicine); • Maulik Upadhyay (pHD Wageningen University); • dr. Richard Crooijmans (Animal Breeding and Genomics Centre, Wageningen University); • ir. Leo Linnartz (Ark Nature) Summary of: Aurochs Genetics, a cornerstone of biodiversity Preface In 2015 a report is written on Aurochs genetics, made possible by a grant from the Dutch Liberty Wildlife fund. This fund provided the Taurus foundation with a grant of EUR 20.000 to conduct genetic research on aurochs and its relation with nowadays so- called ‘primitive’ breeds. This is the summary of that report. This summary shortly describes the current state of affairs, what we do know early 2015 about the aurochs, about domestic cattle and the relationship of aurochs and the primitive breeds used in the Tauros Programme. Nijmegen, December 2015. page 2 Summary of: Aurochs Genetics, a cornerstone of biodiversity Table of contents Preface 2 Table of contents ......................................................................................................... 3 Summary ..................................................................................................................... 4 1 Introduction .......................................................................................................... 6 2 Aurochs: a short description ................................................................................. -
Livestock 2.0 – Genome Editing for Fitter, Healthier, and More Productive Farmed Animals Christine Tait-Burkard, Andrea Doeschl-Wilson, Mike J
Tait-Burkard et al. Genome Biology (2018) 19:204 https://doi.org/10.1186/s13059-018-1583-1 REVIEW Open Access Livestock 2.0 – genome editing for fitter, healthier, and more productive farmed animals Christine Tait-Burkard, Andrea Doeschl-Wilson, Mike J. McGrew, Alan L. Archibald, Helen M. Sang, Ross D. Houston, C. Bruce Whitelaw and Mick Watson* increased affluence in low- and middle-income countries Abstract (LMICs). Terrestrial and aquatic animal production in The human population is growing, and as a result we these countries is heavily reliant on small-holder need to produce more food whilst reducing the farmers, who collectively play a crucial role in global ani- impact of farming on the environment. Selective mal protein production. For example, of the 570 million breeding and genomic selection have had a farms worldwide, over 1 in 4 (150 million) have at least transformational impact on livestock productivity, and one milk-producing animal [4], and farms with fewer now transgenic and genome-editing technologies than 100 animals account for over 99.7% of global dairy offer exciting opportunities for the production of fitter, production [5]. In LMICs, livestock accounts for over healthier and more-productive livestock. Here, we 60% of agricultural gross domestic product (GDP) [6], review recent progress in the application of genome and farmed animals provide livelihoods for over 1 billion editing to farmed animal species and discuss the people globally [7]. While increasing reliance on potential impact on our ability to produce food. plant-based diets is often raised as a potential solution to food insecurity and as part of the effort required to address climate change [8], omission of animal protein Introduction from human diets risks nutritional deficiencies and mal- There are an estimated 7.6 billion humans on the planet, nutrition [9]. -
Diversity and Evolution of 11 Innate Immune Genes in Bos Taurus Taurus and Bos Taurus Indicus Cattle
Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle Christopher M. Seaburya,1, Paul M. Seaburyb, Jared E. Deckerc, Robert D. Schnabelc, Jeremy F. Taylorc, and James E. Womacka,1 aDepartment of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467; bElanTech, Inc., Greenbelt, MD 20770; and cDivision of Animal Sciences, University of Missouri, Columbia MO 65211-5300 Contributed by James E. Womack, November 11, 2009 (sent for review September 29, 2009) The Toll-like receptor (TLR) and peptidoglycan recognition protein family members are primarily expressed by antigen-presenting 1(PGLYRP1) genes play key roles in the innate immune systems of cells, such as macrophages or dendritic cells, and previous in- mammals. While the TLRs recognize a variety of invading patho- vestigations have elucidated the ligand specificities for most gens and induce innate immune responses, PGLYRP1 is directly mammalian TLRs, with six gene family members (TLR1, TLR2, microbicidal. We used custom allele-specific assays to genotype TLR4, TLR5, TLR6, TLR9) known to recognize microbial and validate 220 diallelic variants, including 54 nonsynonymous (bacteria, fungi, protozoa) and synthetic ligands, and five gene SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) family members (TLR3, TLR4, TLR7–TLR9) known to recog- for 37 cattle breeds. Bayesian haplotype reconstructions and me- nize viral components (1, 11, 15). TLR10 is the only functional dian joining networks revealed haplotype sharing between Bos member of the human TLR gene family for which specific li- taurus taurus and Bos taurus indicus breeds at every locus, and gands are yet to be identified (16). -
Phylogenetic Relationships of the Vulnerable Wild Cattle, Malayan Gaur (Bos Gaurus Hubbacki), and Its Hybrid, the Selembu, Based on Maternal Markers
Turkish Journal of Zoology Turk J Zool (2016) 40: 369-378 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1501-57 Phylogenetic relationships of the vulnerable wild cattle, Malayan gaur (Bos gaurus hubbacki), and its hybrid, the selembu, based on maternal markers 1 1 2 Muhammad Khairul Anwar ROSLI , Syed Mohamad Fahmi SYED-SHABTHAR , Jeffrine Japning ROVIE-RYAN , 3 1 1 1, Ramlah ZAINUDDIN , Md Nor SHUKOR , Salmah YAAKOP , Badrul Munir MD-ZAIN * 1 School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia 2 Department of Wildlife and National Parks (PERHILITAN), Peninsular Malaysia, Kuala Lumpur, Malaysia 3 Molecular Ecology Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia Received: 29.01.2015 Accepted/Published Online: 30.09.2015 Final Version: 07.04.2016 Abstract: The gaur (Bos gaurus) is one of the two extant wild cattle species that can be found in several Asian countries. This species is threatened by extinction due to declining wild populations. Selembu is the name of the Malayan gaur × domestic cattle hybrid. We planned this study to determine the position of the Malayan gaur and its hybrid, the selembu, in the phylogenetics of the genus Bos (Bos gaurus, Bos javanicus, Bos indicus, and Bos taurus). The mitochondrial 12S rRNA gene and the control region (D-loop) were sequenced in 29 Bos samples. Sequences from one water buffalo (Bubalus) were used as an outgroup. Phylogenetic trees were reconstructed using neighbor-joining and maximum parsimony in PAUP 4.0b10 and Bayesian inference in MrBayes 3.1.