A Primary Assembly of a Bovine Haplotype Block Map Based On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Haplotype Block Definition and Its Application X. Zhu, S. Zhang, D
Haplotype Block Definition and Its Application X. Zhu, S. Zhang, D. Kan, and R. Cooper Pacific Symposium on Biocomputing 9:152-163(2004) HAPLOTYPE BLOCK DEFINITION AND ITS APPLICATION X. ZHU1, S. ZHANG2,3, D. KAN1, R. COOPER1 1 Department of Preventive Medicine and Epidemiology, Loyola University Stritch School of Medicine, Maywood, IL 60153, 2 Department of Mathematical Science, Michigan Technological University, Houghton, MI and 3Department of Mathematics, Heilongjiang University, Harbin, China We present a simple two-stage procedure to define haplotype blocks and construct a statistic to test whether a polymorphism belongs to a block. Applying this method to the data of Gabriel et al. [2002] yielded longer haplotype blocks than were originally reported with a similar average percentage of common haplotypes in blocks. Furthermore, across regions of the genome and among the four populations that were studied, we found that linkage disequilibrium between a given single nucleotide polymorphism (SNP) and the haplotype block was a monotonic function of distance. This correlation was essentially independent of the minor allele frequency of the putative causal SNP when it fell outside of the block, however it was strongly dependent on the minor allele frequency when the SNP was internal to the block. These results have direct application to the design of candidate gene or region-wide association studies. 1 Introduction Since SNPs occur about every 300bp they provide much more information than other types of sequence variants in mapping complex diseases. Because the evolutionary history of common diseases is not known, one promising approach is to comprehensively test common genetic variants for association with the trait being studied [1,2]. -
Livestock Genomics Comes of Age Michel Georges and Leif Anclersson 2
Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Livestock Genomics Comes of Age Michel Georges and Leif Anclersson 2 1Department of Genetics, Faculty of Veterinary Medicine, University of Liege, 4000-Liege, Belgium; 2Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, 24 Uppsala, Sweden It is estimated that man 1 first domesticated ani- as by an undefined number of polygenes or quan- mals as early as 10,000 BP. Since then, farmers titative trait loci (QTL). Their heritabilities typi- have been unwittingly manipulating livestock cally range from less than 5% to over 50%. Ani- genes by selective breeding. This early genetic en- mal geneticists therefore have had a long-stand- gineering generated a wealth of variation for a ing interest in the genetics of complex inherit- myriad of traits in the different livestock species. ance, the relevance of which is being recognized The dramatic size difference between the Shire increasingly in medical genetics as well. and Shetland pony or the plethora of dog breeds The implementation of breeding schemes are just two illustrations of the diversification ob- that proved so efficient would have been impos- tained by artificial selection. The resulting carica- sible without the organization of extensive phe- ture of naturally occurring variation has played a notypic record keeping. Particularly illustrative major role in Darwin's formalization of his in this respect is the collection of individual re- theory of the evolution of species by natural se- cords (milk yield and composition, type traits, lection. -
The Genome Sequence of Taurine Cattle: a Window to Ruminant Biology and Evolution the Bovine Genome Sequencing and Analysis Consortium, Christine G
REPORTS second model, the two main conditions were para- different issues. In particular, Bhatt and Camerer found 34. W. Seeley et al., J. Neurosci. 27, 2349 (2007). metrically modulated by the two categories, higher insula and ACC activity when comparing choices to 35. J. Downar, A. Crawley, D. Mikulis, K. Davis, Nat. Neurosci. first-order beliefs in dominance-solvable games. 3, 277 (2000). respectively (SOM, S5.1). The activation of the 3. We are considering here coordination without visual or 36. J. Downar, A. Crawley, D. Mikulis, K. Davis, J. Neurophysiol. precuneus was higher for hard dominance-solvable other contact. Nonhuman primates seem able to 87, 615 (2002). games than for easy ones (Fig. 4A and table S10). coordinate their actions (simultaneously pulling on bars 37. K. Davis et al., J. Neurosci. 25, 8402 (2005). The activation of the insula was higher for the to obtain food) when they are in visual contact (45). 38. K. Taylor, D. Seminowicz, K. Davis, Hum. Brain Mapp., 4. J. Mehta, C. Starmer, R. Sugden, Am. Econ. Rev. 84, 658 in press; published online 15 December 2008; highly focal coordination games than for less fo- (1994). 10.1002/hbm.20705. cal ones (Fig. 4B and table S11). Previous studies 5. T. Schelling, J. Conflict Resolution 2, 203 (1958), p. 211. 39. See (47). The NCI can be interpreted as the probability also found that precuneus activity increased when 6. D. Kahneman, Am. Psychol. 58, 697 (2003). that two randomly chosen individuals make the same the number of planned moves increased (40, 41). 7. K. -
Creation of Subgroup-Specific Haplotype Blocks and Libraries
HIGHLIGHTED ARTICLE | INVESTIGATION HaploBlocker: Creation of Subgroup-Specific Haplotype Blocks and Libraries Torsten Pook,*,†,1 Martin Schlather,†,‡ Gustavo de los Campos,§ Manfred Mayer,** Chris Carolin Schoen,** and Henner Simianer*,† *Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, 37075, Germany, †Center for Integrated Breeding Research, University of Goettingen, 37075, Germany, ‡Stochastics and Its Applications Group, University of Mannheim, 68159, Germany, §Departments of Epidemiology and Biostatistics and Statistics and Probability, Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan 48824, and **Plant Breeding, Technical University of Munich School of Life Sciences Weihenstephan, 85354 Freising, Germany ORCID IDs: 0000-0001-7874-8500 (T.P.); 0000-0001-5692-7129 (G.d.l.C.); 0000-0003-2687-8316 (M.M.) ABSTRACT The concept of haplotype blocks has been shown to be useful in genetics. Fields of application range from the detection of regions under positive selection to statistical methods that make use of dimension reduction. We propose a novel approach (“HaploBlocker”) for defining and inferring haplotype blocks that focuses on linkage instead of the commonly used population-wide measures of linkage disequilibrium. We define a haplotype block as a sequence of genetic markers that has a predefined minimum frequency in the population, and only haplotypes with a similar sequence of markers are considered to carry that block, effectively screening a dataset for group-wise identity-by-descent. From these haplotype blocks, we construct a haplotype library that represents a large proportion of genetic variability with a limited number of blocks. Our method is implemented in the associated R-package HaploBlocker, and provides flexibility not only to optimize the structure of the obtained haplotype library for subsequent analyses, but also to handle datasets of different marker density and genetic diversity. -
Bovinehd Genotyping Beadchip More Than 777,000 Snps That Deliver the Densest Coverage Available for the Bovine Genome
Data Sheet: Agrigenomics BovineHD Genotyping BeadChip More than 777,000 SNPs that deliver the densest coverage available for the bovine genome. of the markers are mapped to the UMD3 bovine genome assembly,3 Highlights which include coverage of autosomal, mitochondrial, and sex-linked • Comprehensive and Uniform Coverage (X/Y) SNPs. Uniform genomic coverage, with an average gap size Evenly distributed polymorphic SNPs with a median < 3 kb of 3.43 kb and a median gap size of 2.68 kb, provides excellent gap spacing SNP density to power robust genome-association studies and CNV detection in cattle (Figure 2).4 The BovineHD BeadChip is the most • Unrivaled Call Rates and Accuracy comprehensive tool in the Illumina portfolio of bovine products. > 99% average call rates and > 99.9% reproducibility • Simple Workflow More than 93% of SNPs featured on the BovineHD BeadChip target PCR- and ligation-free protocol novel SNP loci that were discovered by sequencing > 20 individual breeds of economically important beef and dairy cattle (Table 3). Using • High-Throughput Format Illumina next-generation paired-end sequencing technology, > 90% Up to 8 samples can be interrogated in parallel of the included SNPs were identified from over 180× coverage of the mappable Btt genome. Prioritization for SNP selection included the following parameters: 1) breed-specific expected MAF, 2) Infinium HD Introduction design score, 3) unmapped contig coverage, 4) breed weighting, 5) breed‐specific spacing, and 6) and position based on region of The BovineHD BeadChip (Figure 1) is the most comprehensive genome (ie, exon, repetitive, segmental duplication/CNV). genome-wide genotyping array, providing superior power to interrogate genetic variation across any breed of beef and dairy cattle. -
1 DRUG DISCOVERY TARGETING GENOMIC APPROACH Submitted
DRUG DISCOVERY TARGETING GENOMIC APPROACH A Dissertation submitted to the Department of Pharmacy, East West University, in partial fulfillment of the requirements for the degree of Master of Pharmacy. Submitted By Mst. Tania Ashraf ID: 2014-3-79-006 Department Of Pharmacy East West University 1 This thesis paper is dedicated to my beloved Parents… 2 DECLARATION BY THE CANDIDATE I, Mst.Tania Ashraf, hereby declare that this dissertation, entitled “Drug discovery targeting genomic approach” submitted to the Department of Pharmacy, East West University, in the partial fulfillment of the requirement for the degree of Master of Pharmacy, is a genuine & authentic research work carried out by me under the guidance of Dr. Repon Kumer Saha, Assistant Professor, Department of Pharmacy, East West University, Dhaka. The contents of this dissertation, in full or in parts, have not been submitted to any other Institute or University for the award of any Degree or Diploma of Fellowship. ---------------------------------- Mst. Tania Ashraf ID: 2014-3-79-006 Department of Pharmacy East West University Jaharul Islam city, Aftabnagar, Dhaka 3 CERTIFICATION BY THE SUPERVISOR This is to certify that the desertion, entitled “Drug discovery targeting genomic approach” is a benefice research work done, under our guidance and supervision by Mst. Tania Ashraf (ID: 2014-3-79-006), in partial fulfillment of the requirement for the degree of Master of Pharmacy. ------------------------------------- Dr. Repon Kumer Saha Assistant Professor Department of Pharmacy East West University Jaharul Islam city, Aftabnagar, Dhaka 4 ENDORSEMENT BY THE CHAIRPERSON This is to certify that the dissertation, entitled “Drug discovery targeting proteomic approach” is a bonafide research work done by Mst.Tania Ashraf (ID: 2014-3-79-006), in partial fulfillment of the requirements for the degree of Master of Pharmacy. -
Bovine Genomic Sequencing Initiative Cattle-Izing the Human Genome
Bovine Genomic Sequencing Initiative Cattle-izing the Human Genome Richard Gibbs and George Weinstock, Baylor College of Medicine, Human Genome Sequencing Center; Steven Kappes, USDA-ARS, US Meat Animal Research Center; Lawrence Schook, University of Illinois; Loren Skow and James Womack, Texas A&M University Rationale and Objective. Completion of the human genome sequence provides the starting point for understanding the genetic complexity of man and how genetic variation contributes to diverse phenotypes and disease. It is clear that model organisms have played an invaluable role in capturing this information. It is also noted that additional species must be sequenced to resolve the genetic complexity of human evolution and to effectively extrapolate genetic information from comparative (veterinary) medicine to human medicine. The selection of animals representing evolutionary clades distinct from primates or rodents provides considerable power for analysis of the human genomic sequence. The domesticated, eutherian mammals that have co-evolved with man (cows, pigs, dogs and cats), represent taxa with diverse selected phenotypes and have in place strong scientific and veterinary medical communities to support and utilize genome sequence information. Thus, this “white paper” provides support for sequencing the bovine genome (6X coverage) to identify new genes and novel regulatory elements in humans, mice and rats. The bovine genome will serve as a reference non-primate, non- rodent, eutherian genome. The bovine genome is uniquely positioned for genomic sequencing because of the advanced stage of the reagents. An international bovine BAC map with a 15X coverage will be fingerprinted and all fingerprinted clones end-sequenced by February 2003. A minimum tilling path of BAC clones will be sequenced with a whole genome shotgun sequencing effort using random insert libraries. -
The Definition of Multilocus Haplotype
Aus der Arbeitsgruppe Bioinformatik des Max-Delbruck-Centrums¨ fur¨ Molekulare Medizin (MDC), Berlin-Buch, in Kooperation mit der Medizinischen Fakult¨at der Charit´e- Universit¨atsmedizin Berlin The Definition of Multilocus Haplotype Blocks and Common Diseases Dissertation zur Erlangung des akademischen Grades Doctor rerum medicarum (Dr. rer. medic.) im Fach Medizin vorgelegt der Medizinischen Fakult¨at der Charit´e– Universit¨atsmedizin Berlin Humboldt-Universit¨at zu Berlin von Herrn Dipl.-Math. Michael Nothnagel geboren am 22.07.1971 in Berlin Pr¨asident der Humboldt-Universit¨at zu Berlin: Prof. Dr. Jurgen¨ Mlynek Dekan der Medizinischen Fakult¨at der Charit´e– Universit¨atsmedizin Berlin: Prof. Dr. med. Martin Paul Gutachter: 1. Univ.Prof. Dr. em. Jens G. Reich 2. Suzanne M. Leal, Ph.D., Associate Professor 3. Prof. Dr. Andreas Ziegler eingereicht am: 03. M¨arz 2004 Datum der Promotion (Tag der mundlichen¨ Prufung):¨ 13. Dezember 2004 Abstract Current approaches to haplotype block definition target either absent recom- bination events or the efficient description of genomic variation. This thesis aims to define blocks of single nucleotide polymorphisms (SNP) as areas of elevated linkage disequilibrium (LD). To this end, a new entropy-based measure for LD between multiple markers/loci, the Normalized Entropy Dif- ference, is developed and is characterized as a multilocus extension of the pairwise measure r2. A corresponding algorithm for the block definition is proposed. Its evaluation on a data set of human chromosome 12 from the International Haplotype Map project proves the usefulness of the derived blocks with respect to several features, including their chromosomal cover- age and the number and portion of common block haplotypes. -
Unlocking the Bovine Genome
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/24358846 Unlocking the Bovine Genome Article in BMC Genomics · May 2009 DOI: 10.1186/1471-2164-10-193 · Source: PubMed CITATIONS READS 48 142 6 authors, including: Ross L Tellam Danielle Lemay The Commonwealth Scientific and Industrial Research Organisation University of California, Davis 247 PUBLICATIONS 7,657 CITATIONS 148 PUBLICATIONS 3,445 CITATIONS SEE PROFILE SEE PROFILE Kim Carlyle Worley Baylor College of Medicine 411 PUBLICATIONS 86,467 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Vaccines against ticks and myiasis flies View project Milk and innate immunity View project All content following this page was uploaded by Danielle Lemay on 13 May 2014. The user has requested enhancement of the downloaded file. BMC Genomics BioMed Central Commentary Open Access Unlocking the bovine genome Ross L Tellam*1, Danielle G Lemay2, Curtis P Van Tassell3, Harris A Lewin4, Kim C Worley5 and Christine G Elsik6 Address: 1CSIRO Livestock Industries, 306 Carmody Rd, St Lucia 4067, QLD, Australia, 2Department of Food Science and Technology, University of California, One Shields Ave, Davis, CA 95616, USA, 3Bovine Functional Genomics laboratory, USDA/ARS, BARC-East, Beltsville, MD, 20705, USA, 4Institute for Genomic Biology and Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, 5Human Genome Sequencing Center, Department of Molecular -
Livestock 2.0 – Genome Editing for Fitter, Healthier, and More Productive Farmed Animals Christine Tait-Burkard, Andrea Doeschl-Wilson, Mike J
Tait-Burkard et al. Genome Biology (2018) 19:204 https://doi.org/10.1186/s13059-018-1583-1 REVIEW Open Access Livestock 2.0 – genome editing for fitter, healthier, and more productive farmed animals Christine Tait-Burkard, Andrea Doeschl-Wilson, Mike J. McGrew, Alan L. Archibald, Helen M. Sang, Ross D. Houston, C. Bruce Whitelaw and Mick Watson* increased affluence in low- and middle-income countries Abstract (LMICs). Terrestrial and aquatic animal production in The human population is growing, and as a result we these countries is heavily reliant on small-holder need to produce more food whilst reducing the farmers, who collectively play a crucial role in global ani- impact of farming on the environment. Selective mal protein production. For example, of the 570 million breeding and genomic selection have had a farms worldwide, over 1 in 4 (150 million) have at least transformational impact on livestock productivity, and one milk-producing animal [4], and farms with fewer now transgenic and genome-editing technologies than 100 animals account for over 99.7% of global dairy offer exciting opportunities for the production of fitter, production [5]. In LMICs, livestock accounts for over healthier and more-productive livestock. Here, we 60% of agricultural gross domestic product (GDP) [6], review recent progress in the application of genome and farmed animals provide livelihoods for over 1 billion editing to farmed animal species and discuss the people globally [7]. While increasing reliance on potential impact on our ability to produce food. plant-based diets is often raised as a potential solution to food insecurity and as part of the effort required to address climate change [8], omission of animal protein Introduction from human diets risks nutritional deficiencies and mal- There are an estimated 7.6 billion humans on the planet, nutrition [9]. -
Diversity and Evolution of 11 Innate Immune Genes in Bos Taurus Taurus and Bos Taurus Indicus Cattle
Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle Christopher M. Seaburya,1, Paul M. Seaburyb, Jared E. Deckerc, Robert D. Schnabelc, Jeremy F. Taylorc, and James E. Womacka,1 aDepartment of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467; bElanTech, Inc., Greenbelt, MD 20770; and cDivision of Animal Sciences, University of Missouri, Columbia MO 65211-5300 Contributed by James E. Womack, November 11, 2009 (sent for review September 29, 2009) The Toll-like receptor (TLR) and peptidoglycan recognition protein family members are primarily expressed by antigen-presenting 1(PGLYRP1) genes play key roles in the innate immune systems of cells, such as macrophages or dendritic cells, and previous in- mammals. While the TLRs recognize a variety of invading patho- vestigations have elucidated the ligand specificities for most gens and induce innate immune responses, PGLYRP1 is directly mammalian TLRs, with six gene family members (TLR1, TLR2, microbicidal. We used custom allele-specific assays to genotype TLR4, TLR5, TLR6, TLR9) known to recognize microbial and validate 220 diallelic variants, including 54 nonsynonymous (bacteria, fungi, protozoa) and synthetic ligands, and five gene SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) family members (TLR3, TLR4, TLR7–TLR9) known to recog- for 37 cattle breeds. Bayesian haplotype reconstructions and me- nize viral components (1, 11, 15). TLR10 is the only functional dian joining networks revealed haplotype sharing between Bos member of the human TLR gene family for which specific li- taurus taurus and Bos taurus indicus breeds at every locus, and gands are yet to be identified (16). -
The Genome 10K Project: a Way Forward
The Genome 10K Project: A Way Forward Klaus-Peter Koepfli,1 Benedict Paten,2 the Genome 10K Community of Scientists,Ã and Stephen J. O’Brien1,3 1Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation; email: [email protected] 2Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064 3Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida 33004 Annu. Rev. Anim. Biosci. 2015. 3:57–111 Keywords The Annual Review of Animal Biosciences is online mammal, amphibian, reptile, bird, fish, genome at animal.annualreviews.org This article’sdoi: Abstract 10.1146/annurev-animal-090414-014900 The Genome 10K Project was established in 2009 by a consortium of Copyright © 2015 by Annual Reviews. biologists and genome scientists determined to facilitate the sequencing All rights reserved and analysis of the complete genomes of10,000vertebratespecies.Since Access provided by Rockefeller University on 01/10/18. For personal use only. ÃContributing authors and affiliations are listed then the number of selected and initiated species has risen from ∼26 Annu. Rev. Anim. Biosci. 2015.3:57-111. Downloaded from www.annualreviews.org at the end of the article. An unabridged list of G10KCOS is available at the Genome 10K website: to 277 sequenced or ongoing with funding, an approximately tenfold http://genome10k.org. increase in five years. Here we summarize the advances and commit- ments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and futurevision of the landscape of Genome 10K.