Novel Recessive BFSP2 and PITX3 Mutations: Insights Into Mutational Mechanisms from Consanguineous Populations Mohammed A

Total Page:16

File Type:pdf, Size:1020Kb

Novel Recessive BFSP2 and PITX3 Mutations: Insights Into Mutational Mechanisms from Consanguineous Populations Mohammed A BRIEF REPORT Novel recessive BFSP2 and PITX3 mutations: Insights into mutational mechanisms from consanguineous populations Mohammed A. Aldahmesh, BSc, MSc, PhD1, Arif O. Khan, MD1,2, Jawahir Mohamed, BSc1, and Fowzan S. Alkuraya, MD1,3,4 Purpose: Designating mutations as recessive or dominant is a function of mutations often provide new insights into the molecular patho- 1 the effect of the mutant allele on the phenotype. Genes in which both genesis of the mutation and the associated phenotype. classes of mutations are known to exist are particularly interesting to study We have shown that for genetically heterogeneous disorders because these mutations typically define distinct pathogenic mechanisms at that can be caused by both dominant and recessive mutations, the molecular level. Methods: We studied two consanguineous families recessive mutations are typically overrepresented in consan- 2 with different eye phenotypes and used a combination of candidate gene guineous populations. However, we share here an emerging analysis and homozygosity mapping to identify the underlying genetic theme wherein even for genes in which only dominant muta- defects. Results: In one family, a novel BFSP2 mutation causes autosomal tions are known to exist, consanguineous populations can reveal recessive diffuse cortical cataract with scattered lens opacities, and in the presence of recessively acting mutations which adds a new another, a novel PITX3 mutation causes an autosomal recessive severe dimension to the mechanistic characterization of the molecular form of anterior segment dysgenesis and microphthalmia. Conclusion: We phenotype associated with these genes. show that BFSP2 and PITX3, hitherto known to cause eye defects only in a dominant fashion, can also present recessively. The likely null nature of MATERIALS AND METHODS both mutations and lack of manifestation in heterozygotes strongly argues for a mechanism other than loss of function in the previously reported Patients were evaluated ophthalmologically by one of the dominant mutations in these two genes. Thus, study of consanguineous authors (AOK). Written informed consent was obtained to re- populations has the additional advantage of not only identifying novel cruit patients (RAC #2070023). Sequencing of candidate genes recessive genes but also defining the mutational mechanism of dominant with or without homozygosity mapping was done as dictated by disorders. Genet Med 2011:13(11):978–981. the family history. Homozygosity mapping was performed by Axiom CEU Human Array (Affymetrix) genotyping according Key Words: sclerocornea, recessive mutations, homozygosity, inter- to the manufacturer’s protocol followed by analysis for runs of mediate fibers, BFSP2, PITX3, juvenile cataract homozygosity using autoSNPa as described before.3 he gene and disease paradigm has benefited greatly from the RESULTS Texpanding compendium of mutations and their effect on health. Key to the mechanistic understanding of this link be- The pedigrees of both study families are shown in Figure 1. tween mutations and the diseases they cause is the study of the Family 1 consists of healthy first cousin parents and one daughter molecular consequences of these mutations. Although an over- with bilateral severe congenital microphthalmia and a very severe all pattern can be appreciated in the mutational behavior of form of anterior segment dysgenesis (ASD) best described as many genes, e.g., mutations in enzyme-coding genes tend to sclerocornea (Fig. 2). An affected cousin was unavailable. Family behave recessively whereas multimeric structural protein-cod- 2 consists of healthy first cousin parents and three daughters with ing genes tend to behave dominantly, there are instances in juvenile-onset diffuse cortical cataract with scattered lens opacities which individual genes can harbor both classes of mutations. (age of symptoms approximately 12 years of age for each; Fig. 1). These genes are particularly interesting to study because the The father had had bilateral cataract surgery for posterior subcap- distinct pathogenic mechanisms for recessive and dominant sular cataract at 44 years of age. The 50-year-old mother and six other children were unaffected. For Family 1, we sequenced a panel of genes known to cause ASD (CYP1B1, PAX6, PITX2, and PITX3) and identified a homozygous From the 1Department of Genetics, King Faisal Specialist Hospital and Re- search Center; 2Department of Pediatric Ophthalmology, King Khaled Eye Spe- mutation in PITX3 c.640_656del (p.(Ala214ArgfsX42)) (Fig. 1). For cialist Hospital; 3Department of Anatomy and Cell Biology, College of Medicine, Family 2, we performed homozygosity scan and identified a single Alfaisal University; and 4Department of Pediatrics, King Khalid University Hospital run of a homozygosity shared between all affected patients. This is and College of Medicine, King Saud University, Riyadh, Saudi Arabia. a known dominant cataract locus that is linked to BFSP2 muta- Fowzan S Alkuraya, MD, Developmental Genetics Unit, Department of tions. Surprisingly, we identified a homozygous BFSP2 mutation Genetics, King Faisal Specialist Hospital and Research Center, MBC 03, PO c.598_599dup (p.(Ala201ArgfsX19)) (Fig. 1). Both PITX3 and Box 3354, Riyadh 11211, Saudi Arabia. E-mail: [email protected]. BFSP2 mutations were present in a heterozygous state in the The first two authors contributed equally to this work. unaffected parents. The BFSP2 mutation was also identified in Disclosure: The authors declare no conflict of interest. three of the six healthy children. Submitted for publication February 24, 2011. Accepted for publication May 24, 2011. DISCUSSION Published online ahead of print August 10, 2011. We report the identification of the first recessive mutations in DOI: 10.1097/GIM.0b013e31822623d5 two key regulators of lens development in humans: BFSP2 and 978 Genetics IN Medicine • Volume 13, Number 11, November 2011 Genetics IN Medicine • Volume 13, Number 11, November 2011 Novel Recessive BFSP2 and PITX3 Mutations Fig. 1. Pedigrees of Family 1 and Family 2. Affected cousins (by history) in both families were unavailable. PITX3. BFSP2 encodes CP49, an intermediate filament (IF) dominant negative fashion by interfering with the assembly of the protein that is lens-specific in its expression.4 Like other IF wild-type protein, particularly when one considers that all three proteins in the lens, CP49 plays a critical role in the highly mutations affect the rod domain which is required for the beaded orchestrated organization of the cytoskeleton of the differenti- filament assembly. The mutation we report here is almost certainly ated fiber cells.5 The hexagonal architecture of these fiber cells null because the mutant protein lacks most of the Coil1b domain provides a remarkably efficient packaging mechanism that re- and the entire rod domain and the downstream Coil-2 domain.12 duces intercellular spaces which is highly suited for the strict Therefore, we hypothesize that this mutant protein that com- optical properties of the lens.6 CP49 is an atypical IF protein, pletely lacks the ability to assemble or polymerize is unlikely however, in that it lack the C-tail seen in other IF.7 It does not to interfere with the wild-type protein. This is likely tolerated form homopolymers but rather heterodimerizes with BFSP1, by the lens fiber cells and may explain the lack of phenotypic another lens-specific IF protein.8 Mutations of both BFSP1 and consequences in the heterozygotes in this family (mother, BFSP2 are known to cause cataract in humans. grandparents, and three healthy children); however, we can- Three dominant mutations have been reported to date in BFSP2, not exclude that early onset senile cataract in the father, all involving single amino acids (two missense and one in-frame although different in morphology, may have been influenced deletion).9–11 The resulting phenotype was a cataract phenotype by his carrier status. Our hypothesis is also supported by the (juvenile and congenital) that is comparable with the one reported lack of phenotype in the mice that are heterozygous for here, but the pathogenic mechanism of those dominant mutations complete null alleles.13 Furthermore, the only human muta- remains unknown. The involvement of single amino acids makes it tion to date in the closest relative of BFSP2, BFSP1, is also tantalizingly plausible that the intact mutant protein acts in a a null mutation that causes cataract only recessively.14 Genetics IN Medicine • Volume 13, Number 11, November 2011 979 Aldahmesh et al. Genetics IN Medicine • Volume 13, Number 11, November 2011 Fig. 2. A, Orbital CT shows microphthalmia in patient in Family 1. B, Slit-lamp examination of one of the patients in Family 2 showing cortical cataract with scattered lens opacities. C and D, Sequence chromatogram showing mutations in PITX3 and BFSP2, respectively. Similarly, PITX3, which is known for its pivotal role in the being the last coding exon. The previously reported 17 bp normal formation of the lens vesicle and separation from the duplication results in a frameshift in codon 220 and produces lens ectoderm, is only known to cause ASD dominantly in an aberrant protein consisting of 94 additional residues, i.e., humans. Three mutations have been reported to date in this tran- the novel stop codon is introduced downstream to the orig- scription factor, but the pathogenic mechanism of the mutation is inal stop codon so nonsense-mediated decay is unlikely to be still unclear.15,16 For instance, one recent
Recommended publications
  • Isyte: Integrated Systems Tool for Eye Gene Discovery
    Lens iSyTE: Integrated Systems Tool for Eye Gene Discovery Salil A. Lachke,1,2,3,4 Joshua W. K. Ho,1,4,5 Gregory V. Kryukov,1,4,6 Daniel J. O’Connell,1 Anton Aboukhalil,1,7 Martha L. Bulyk,1,8,9 Peter J. Park,1,5,10 and Richard L. Maas1 PURPOSE. To facilitate the identification of genes associated ther investigation. Extension of this approach to other ocular with cataract and other ocular defects, the authors developed tissue components will facilitate eye disease gene discovery. and validated a computational tool termed iSyTE (integrated (Invest Ophthalmol Vis Sci. 2012;53:1617–1627) DOI: Systems Tool for Eye gene discovery; http://bioinformatics. 10.1167/iovs.11-8839 udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions impli- ven with the advent of high-throughput sequencing, the cated in disease and to prioritize them for further mutational Ediscovery of genes associated with congenital birth defects and functional analyses. such as eye defects remains a challenge. We sought to develop METHODS. Microarray gene expression profiles were obtained a straightforward experimental approach that could facilitate for microdissected embryonic mouse lens at three key devel- the identification of candidate genes for developmental disor- opmental time points in the transition from the embryonic day ders, and, as proof-of-principle, we chose defects involving the (E)10.5 stage of lens placode invagination to E12.5 lens primary ocular lens. Opacification of the lens results in cataract, a leading cause of blindness that affects 77 million persons and fiber cell differentiation.
    [Show full text]
  • A New Mutation in BFSP2 (G1091A) Causes Autosomal Dominant Congenital Lamellar Cataracts
    Molecular Vision 2008; 14:1906-1911 <http://www.molvis.org/molvis/v14/a226> © 2008 Molecular Vision Received 17 August 2008 | Accepted 18 October 2008 | Published 24 October 2008 A new mutation in BFSP2 (G1091A) causes autosomal dominant congenital lamellar cataracts Xu Ma,1,2,3 Fei-Feng Li,1,2 Shu-Zhen Wang,4 Chang Gao,1,2 Meng Zhang,2 Si-Quan Zhu4 (The first three authors contributed equally to this work.) 1Graduate School, Peking Union Medical College, Beijing, China; 2Department of Genetics, National Research Institute for Family Planning, Beijing, China; 3WHO Collaborative Center for Research in Human Reproduction, Beijing, China; 4Beijing Tongren Eye Center, Capital Medical University, Beijing, China Purpose: We sought to identify the genetic defect in a four-generation Chinese family with autosomal dominant congenital lamellar cataracts and demonstrate the functional analysis with biosoftware of a candidate gene in the family. Methods: Family history data were recorded. Clinical and ophthalmologic examinations were performed on family members. All the members were genotyped with microsatellite markers at loci considered to be associated with cataracts. Two-point LOD scores were calculated by using the Linkage Software after genotyping. A mutation was detected by using gene-specific primers in direct sequencing. Wild type and mutant proteins were analyzed with Online Bio-Software. Results: Affected members of this family had lamellar cataracts. Linkage analysis was obtained at markers D3S2322 (LOD score [Z]=7.22, recombination fraction [θ]=0.0) and D3S1541 (Z=5.42, θ=0.0). Haplotype analysis indicated that the cataract gene was closely linked to these two markers.
    [Show full text]
  • Detailed Review Paper on Retinoid Pathway Signalling
    1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process.
    [Show full text]
  • Pitx3 KNOCKOUT MICE ENTRAIN to SCHEDULED FEEDING DESPITE
    Pitx3 KNOCKOUT MICE ENTRAIN TO SCHEDULED FEEDING DESPITE FREE-RUNNING LIGHT ENTRAINED RHYTHMS A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Biological Sciences By Lori L. Scarpa 2019 SIGNATURE PAGE THESIS: Pitx3 KNOCKOUT MICE ENTRAIN TO SCHEDULED FEEINDING DESPITE FREE-RUNNING LIGHT ENTRAINED RHYTHMS AUTHOR: Lori L. Scarpa DATE SUBMITTED: Fall 2019 Department of Biological Sciences Dr. Andrew D. Steele Thesis Committee Chair Biological Sciences Dr. Juanita Jellyman Biological Sciences Dr. Robert Talmadge Biological Sciences ii ACKNOWLEDGEMENTS Funding for this project was provided by the Whitehall Foundation and California State Polytechnic University of Pomona, California. I would like to thank the many people who assisted in the daily labors required to complete this project: Raymundo Miranda, Michael Sidikpramana, Jeffrey Falkenstein, Michael Williams, Jaskaran Dhanoa, and many other members of the Steele lab. I would like to specially recognize fellow graduate students in the Steele lab, Damien Wolfe and Andrew Villa, for their unconditional encouragement and support. I would like to thank Dr. Juanita Jellyman for her kindness and nurturing spirit. Dr. Jellyman never wavered her belief in me and it was this that kept me working harder towards my goals. Lastly, I would like thank Dr. Andrew Steele for accepting me into his lab, for being my personal mentor, and for pushing me towards success. Through him, I have grown to become a better scientist and found greater inspiration in my pursuit to further study neuroscience. Thank you, Dr. Steele, for your support and patience, and for playing a leading role in my success as a graduate student in your lab.
    [Show full text]
  • Localization of the Lens Intermediate Filament Switch by Imaging Mass Spectrometry
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.053793; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Localization of the Lens Intermediate Filament Switch by Imaging Mass Spectrometry Zhen Wang, Daniel J. Ryan, and Kevin L Schey* Department of Biochemistry, Vanderbilt University, Nashville, TN 37232 * To whom correspondence should be addressed Current address: Mass Spectrometry Research Center Vanderbilt University 465 21st Ave. So., Suite 9160 MRB III Nashville, TN 37232-8575 E-mail: [email protected] Phone: 615.936.6861 Fax: 615.343.8372 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.053793; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Imaging mass spectrometry (IMS) enables targeted and untargeted visualization of the spatial localization of molecules in tissues with great specificity. The lens is a unique tissue that contains fiber cells corresponding to various stages of differentiation that are packed in a highly spatial order. The application of IMS to lens tissue localizes molecular features that are spatially related to the fiber cell organization. Such spatially resolved molecular information assists our understanding of lens structure and physiology; however, protein IMS studies are typically limited to abundant, soluble, low molecular weight proteins. In this study, a method was developed for imaging low solubility cytoskeletal proteins in the lens; a tissue that is filled with high concentrations of soluble crystallins.
    [Show full text]
  • Variants in PAX6, PITX3 and HSF4 Causing Autosomal Dominant Congenital Cataracts ✉ ✉ Vanita Berry 1,2 , Alex Ionides2, Nikolas Pontikos 1,2, Anthony T
    www.nature.com/eye ARTICLE OPEN Variants in PAX6, PITX3 and HSF4 causing autosomal dominant congenital cataracts ✉ ✉ Vanita Berry 1,2 , Alex Ionides2, Nikolas Pontikos 1,2, Anthony T. Moore2, Roy A. Quinlan3 and Michel Michaelides 1,2 © Crown 2021 BACKGROUND: Lens development is orchestrated by transcription factors. Disease-causing variants in transcription factors and their developmental target genes are associated with congenital cataracts and other eye anomalies. METHODS: Using whole exome sequencing, we identified disease-causing variants in two large British families and one isolated case with autosomal dominant congenital cataract. Bioinformatics analysis confirmed these disease-causing mutations as rare or novel variants, with a moderate to damaging pathogenicity score, with testing for segregation within the families using direct Sanger sequencing. RESULTS: Family A had a missense variant (c.184 G>A; p.V62M) in PAX6 and affected individuals presented with nuclear cataract. Family B had a frameshift variant (c.470–477dup; p.A160R*) in PITX3 that was also associated with nuclear cataract. A recurrent missense variant in HSF4 (c.341 T>C; p.L114P) was associated with congenital cataract in a single isolated case. CONCLUSIONS: We have therefore identified novel variants in PAX6 and PITX3 that cause autosomal dominant congenital cataract. Eye; https://doi.org/10.1038/s41433-021-01711-x INTRODUCTION consistent with early developmental effects as would be Cataract the opacification of the eye lens is the most common, but anticipated for PAX6 and PITX3 transcription factors. Recently, treatable cause of blindness in the world (https://www.who.int/ we have found two novel mutations in the transcription factors publications-detail/world-report-on-vision).
    [Show full text]
  • Noninvasive Sleep Monitoring in Large-Scale Screening of Knock-Out Mice
    bioRxiv preprint doi: https://doi.org/10.1101/517680; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Noninvasive sleep monitoring in large-scale screening of knock-out mice reveals novel sleep-related genes Shreyas S. Joshi1*, Mansi Sethi1*, Martin Striz1, Neil Cole2, James M. Denegre2, Jennifer Ryan2, Michael E. Lhamon3, Anuj Agarwal3, Steve Murray2, Robert E. Braun2, David W. Fardo4, Vivek Kumar2, Kevin D. Donohue3,5, Sridhar Sunderam6, Elissa J. Chesler2, Karen L. Svenson2, Bruce F. O'Hara1,3 1Dept. of Biology, University of Kentucky, Lexington, KY 40506, USA, 2The Jackson Laboratory, Bar Harbor, ME 04609, USA, 3Signal solutions, LLC, Lexington, KY 40503, USA, 4Dept. of Biostatistics, University of Kentucky, Lexington, KY 40536, USA, 5Dept. of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA. 6Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA. *These authors contributed equally Address for correspondence and proofs: Shreyas S. Joshi, Ph.D. Dept. of Biology University of Kentucky 675 Rose Street 101 Morgan Building Lexington, KY 40506 U.S.A. Phone: (859) 257-2805 FAX: (859) 257-1717 Email: [email protected] Running title: Sleep changes in knockout mice bioRxiv preprint doi: https://doi.org/10.1101/517680; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Identification of Novel Sleep Related Genes from Large Scale Phenotyping Experiments in Mice
    University of Kentucky UKnowledge Theses and Dissertations--Biology Biology 2017 IDENTIFICATION OF NOVEL SLEEP RELATED GENES FROM LARGE SCALE PHENOTYPING EXPERIMENTS IN MICE Shreyas Joshi University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.159 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Joshi, Shreyas, "IDENTIFICATION OF NOVEL SLEEP RELATED GENES FROM LARGE SCALE PHENOTYPING EXPERIMENTS IN MICE" (2017). Theses and Dissertations--Biology. 42. https://uknowledge.uky.edu/biology_etds/42 This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
    www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line
    [Show full text]
  • Common Variants in SOX-2 and Congenital Cataract Genes Contribute to Age-Related Nuclear Cataract
    ARTICLE https://doi.org/10.1038/s42003-020-01421-2 OPEN Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract Ekaterina Yonova-Doing et al.# 1234567890():,; Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this dis- ease: SOX2-OT (rs9842371, P = 1.7 × 10−19), TMPRSS5 (rs4936279, P = 2.5 × 10−10), LINC01412 (rs16823886, P = 1.3 × 10−9), GLTSCR1 (rs1005911, P = 9.8 × 10−9), and COMMD1 (rs62149908, P = 1.2 × 10−8). The results suggest a strong link of age-related nuclear cat- aract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye. #A list of authors and their affiliations appears at the end of the paper. COMMUNICATIONS BIOLOGY | (2020) 3:755 | https://doi.org/10.1038/s42003-020-01421-2 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01421-2 ge-related cataract is the leading cause of blindness, structure (meta-analysis genomic inflation factor λ = 1.009, accounting for more than one-third of blindness Supplementary Table 4 and Supplementary Fig.
    [Show full text]
  • Proteome Profiling of Developing Murine Lens Through Mass
    Lens Proteome Profiling of Developing Murine Lens Through Mass Spectrometry Shahid Y. Khan,1 Muhammad Ali,1 Firoz Kabir,1 Santosh Renuse,2 Chan Hyun Na,2 C. Conover Talbot Jr,3 Sean F. Hackett,1 and S. Amer Riazuddin1 1The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States 2Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States 3Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States Correspondence: S. Amer Riazuddin, PURPOSE. We previously completed a comprehensive profile of the mouse lens transcriptome. The Wilmer Eye Institute, Johns Here, we investigate the proteome of the mouse lens through mass spectrometry–based Hopkins University School of Medi- protein sequencing at the same embryonic and postnatal time points. cine, 600 N. Wolfe Street; Maumenee 840, Baltimore, MD 21287, USA; METHODS. We extracted mouse lenses at embryonic day 15 (E15) and 18 (E18) and postnatal [email protected]. day 0 (P0), 3 (P3), 6 (P6), and 9 (P9). The lenses from each time point were preserved in three Submitted: February 2, 2017 distinct pools to serve as biological replicates for each developmental stage. The total cellular Accepted: October 13, 2017 protein was extracted from the lens, digested with trypsin, and labeled with isobaric tandem mass tags (TMT) for three independent TMT experiments. Citation: Khan SY, Ali M, Kabir F, et al. Proteome profiling of developing mu- RESULTS. A total of 5404 proteins were identified in the mouse ocular lens in at least one rine lens through mass spectrometry.
    [Show full text]
  • Investigating the Genetic Basis of Altered Activity Profiles in the Blind
    Investigating the genetic basis of altered activity profiles in the blind Mexican cavefish, Astyanax mexicanus A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences of the McMicken College of Arts and Sciences by by Brian M. Carlson B.S. Biology, Xavier University, May 2010 Committee Chair: Dr. Joshua B. Gross June 2015 ABSTRACT Organisms that have evolved to exploit extreme ecological niches may alter or abandon survival strategies that no longer provide a benefit, or may even impose a cost, in the environment to which they have adapted. Cave environments are characterized by perpetual darkness, isolation and relatively constant temperature and humidity. Accordingly, cave-adapted species tend to converge on a suite of regressive and constructive morphological, physiological and behavioral alterations, including loss or reduction of eyes and pigmentation, increased locomotor activity and reduction or alteration of behavioral rhythmicity. The cave environment and the associated changes in locomotor behavior make species of cavefish prime natural models in which to examine the complex genetic architecture underlying these behavioral phenotypes. The principal goal of this dissertation was to investigate the genetic basis of altered locomotor activity patterns in the blind Mexican tetra, Astyanax mexicanus. Initially, a custom locomotor assay rig and experimental protocols were developed to assess, characterize and compare activity patterns in surface and Pachón cavefish. The results of these assays clarified differences between the morphotypes, provided evidence that Pachón cavefish retain a weakly-entrainable circadian oscillator with limited capacity to self-sustain entrained rhythms and suggested that patterns in spatial “tank usage” data may be the result of a positive masking effect in response to light stimulus in both morphotypes.
    [Show full text]