Evolution of Bone Cortical Compactness in Slow Arboreal Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Bone Cortical Compactness in Slow Arboreal Mammals bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279836; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evolution of bone cortical compactness in slow arboreal mammals 2 3 Alfieri F.1,2, Nyakatura J.A.1, Amson E.2 4 1. Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany. 5 6 2. Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, 7 Germany. 8 9 10 Abstract 11 Lifestyle convergences and related phenotypes are a major topic in evolutionary biology. Low bone 12 cortical compactness (CC), shared by the two genera of ‘tree sloths’, has been linked to their convergently 13 evolved slow arboreal ecology. The proposed relationship of low CC with ‘tree sloths’ lifestyle suggests a 14 potential convergent acquisition of this trait in other slow arboreal mammals. ‘Tree sloths’, ‘Lorisidae’, 15 Palaeopropithecidae, Megaladapis and koalas were included in a phylogenetically informed CC analysis of 16 the humerus and femur, as well as closely related but ecologically distinct taxa. We found that ‘tree sloths’ are 17 unparalleled by any analysed clade, in featuring an extremely low CC. A tendency for low CC was however 18 found in palaeopropithecids (especially Palaeopropithecus) and Megaladapis. On the other hand, low CC was 19 not found in ‘Lorisidae’. Koalas, although deviating from the compact structure generally observed in 20 mammals, are not clearly distinct from their sister taxon (wombats) and show humeral CC that is higher than 21 femoral CC. Multiple factors seem to influence CC, preventing the recognition of a simple relationship 22 between slow arborealism and low CC. Highly compact cortical bone in extinct sloths confirms that low CC 23 in ‘tree sloths’ likely represents a recent convergence. 24 25 Corresponding author: Fabio Alfieri, email: [email protected] 26 27 Keywords: convergent evolution, bone microstructure, humerus, femur, tree sloths, subfossil lemurs bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279836; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 28 1. Background 29 Tetrapod long bones microstructure is known to reflect life history, physiology, phylogeny, ontogenetic 30 growth and lifestyle [1–3]. Indeed, diaphyseal microstructure has been related to ecology [2,4,5] and employed 31 to infer it in extinct tetrapods (e.g. [6,7]). Moreover, this relationship potentially enables to recognise patterns 32 of convergent evolution [8]. 33 To highlight convergent phenotypes, mammals are particularly suitable to be investigated given their 34 remarkable diversity of lifestyles. Mammalian groups with different ecological adaptations can be 35 discriminated analyzing several diaphyseal microstructural parameters (e.g. [9,10]). The amount of porosities 36 in the diaphyseal compact cortical bone, or cortical compactness (CC), was recently quantified in the humerus 37 of adult extant and extinct xenarthrans. The two lineages of extant sloths (Choloepus and Bradypus), 38 characterised by an exceptionally slow arboreal lifestyle [11], were found to feature lower CC in respect to 39 other similar-sized taxa which conversely follow the generalised mammalian condition of high CC [12]. 40 Because ‘tree sloths’ are not monophyletic (hence the quotation marks employed herein), this trait was 41 identified as one of the convergent traits related to their independently acquired slow arboreal lifestyle [11,12]. 42 If indeed driven by adaptation to this lifestyle, a low CC may have convergently evolved in other slow arboreal 43 therians, too. With ‘Slow Arboreal’, we refer to species characterised by exceptionally slow and cautious 44 movements on trees and daily activities budgets dominated by rest and quiescence. This set of traits is generally 45 associated with unusually low metabolic rate. To date, no CC analyses were performed on slow arboreal 46 mammals, beside the one on ‘tree sloths’ [12]. Following the latter, we quantified CC in the humerus. 47 Moreover, we also investigated CC of the femur, since this bone is often employed in microstructural analysis 48 (e.g. [13,14]). 49 Together with ‘tree sloths’, we analysed other known slow arboreal lineages, namely the koala 50 Phascolarctos cinereus [15] and ‘lorisids’ [16], with the latter arguably representing a paraphyletic group (see 51 Materials and Methods). Moreover, taxa from two late Quaternary-Holocene subfossil lineages of Malagasy 52 strepsirrhines, Palaeopropithecidae (Palaeopropithecus, Mesopropithecus and Babakotia) and Megaladapidae 53 (Megaladapis) [17,18], are here investigated. They were described as slow and poorly agile arboreal, through 54 postcranial (gross anatomy, e.g. [17,19], diaphyseal and epiphyseal geometric properties, [20]) and cranial [21] bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279836; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 55 evidences (reviewed in [18,20]). Beside the taxa introduced above, a set of close relatives, conversely 56 characterised by different lifestyles, is also studied (Figure 1, Table S1). Taking into account phylogenetic 57 relationships, this ecologically heterogeneous sample enables to identify convergent acquisitions of slow 58 arboreality in the sampled taxa and to highlight a potential pattern of convergent low CC in slow arboreal 59 therians. Noticeably, the sample characterised by distinct lifestyles includes specimens of extinct sloths from 60 the Patagonian Early Miocene Santa Cruz Formation [22–24]. Analyzing them can additionally inform on the 61 evolution of low CC in the two lineages of ‘tree sloths’ and corroborate the proposed recent convergence [12]. 62 In this study, humeral and femoral CC are quantified in a wide mammalian sample, representing slow 63 arboreal clades and near relatives with diverging lifestyles. Results are interpreted in a phylogenetically 64 informed manner. In this way, slow arboreality convergences could be reconstructed and ecological effects on 65 CC are preponderantly taken into account. If a direct relationship with this extreme lifestyle is present, we 66 expect to find the convergent slow arboreal groups consistently showing lower CC in respect to close relatives. 67 68 2. Material and Methods 69 70 a. Sampled collections 71 Ten mammals collections were sampled: Museum für Naturkunde, Berlin (ZMB), Staatliches Museum 72 für Naturkunde, Stuttgart (SMNS), Zoologisches Forschungsmuseum Alexander Koenig, Bonn (ZFMK), 73 Zoologische Staatssammlung, Munich (ZSM), Germany; Naturhistorisches Museum, Wien (NMW), Austria; 74 Muséum national d'Histoire naturelle, Paris (MNHN), France; American Museum of Natural History, New 75 York, NY, (AMNH), Field Museum of Natural History, Chicago, IL, (FMNH), Yale Peabody Museum of 76 Natural History, New Haven, CT, (YPM-PU) and Division of Fossil Primates, Duke Lemur Center, Durham. 77 NC (DPC), USA. A total of 106 humeri and 106 femora, belonging to 47 taxa were sampled. Only non- 78 pathological, non-captive and adult individuals were included. Adulthood was established assessing the degree 79 of epiphyseal fusion, in general, and bone size for marsupials, given their incomplete epiphyseal fusion through 80 adulthood [25]. bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279836; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 81 82 Figure 1. Time-calibrated tree of mammalian taxa here analysed. Six events of convergent acquisition of ‘Slow Arboreal’ 83 adaptations were reconstructed with Stochastic Character Mapping [26]. It is shown by light blue branches and rectangles. 84 Taxa not sampled for the cortical compactness analysis are indicated with *. The figure was built with the ‘geoscalePhylo’ 85 function (‘strap’ R 3.6.3. package, [27]) and modified in Inkscape [28]. 86 87 b. Data acquisition 88 Bones were scanned using micro Computed-Tomography (µCT) (Phoenix | x-ray Nanotom, GE Sensing 89 and Inspection Technologies GmbH; XYLON FF35-CT-System, YXLON GmbH; Microtomograph RX 90 EasyTom 150; Nikon XTH 225 ST; GE v|tome|x). CC being acquired at mid-diaphysis (see below), the field 91 of CT-scan acquisition was focused on this region, in order to reach the highest possible resolution. The mid- 92 shaft was defined as 50% of the whole bone length (Figure S1). Image stacks (16-bit tifs) were acquired with 93 a resolution ranging from 0.0045 to 0.0662 mm (Table S2 and S3), from which the 50% slice was taken. This 94 resolution range typically allows capturing all vacuities except for the smaller lumen of osteons [12] and it is bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279836; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 95 here confirmed for lower resolutions as well. The resolution is unavoidably affected by interspecific 96 differences in bone gross anatomy. Indeed, the presence of bony processes at mid-diaphysis (e.g. third 97 trochanter in the femur of Cingulata) forces an acquisition with longer specimen to X-ray source distance, thus 98 with lower resolution.
Recommended publications
  • Pleistocene Mammals and Paleoecology of the Western Amazon
    PLEISTOCENE MAMMALS AND PALEOECOLOGY OF THE WESTERN AMAZON By ALCEU RANCY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1991 . To Cleusa, Bianca, Tiago, Thomas, and Nono Saul (Pistolin de Oro) . ACKNOWLEDGMENTS This work received strong support from John Eisenberg (chairman) and David Webb, both naturalists, humanists, and educators. Both were of special value, contributing more than the normal duties as members of my committee. Bruce MacFadden provided valuable insights at several periods of uncertainty. Ronald Labisky and Kent Redford also provided support and encouragement. My field work in the western Amazon was supported by several grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) , and the Universidade Federal do Acre (UFAC) , Brazil. I also benefitted from grants awarded to Ken Campbell and Carl Frailey from the National Science Foundation (NSF) I thank Daryl Paul Domning, Jean Bocquentin Villanueva, Jonas Pereira de Souza Filho, Ken Campbell, Jose Carlos Rodrigues dos Santos, David Webb, Jorge Ferigolo, Carl Frailey, Ernesto Lavina, Michael Stokes, Marcondes Costa, and Ricardo Negri for sharing with me fruitful and adventurous field trips along the Amazonian rivers. The CNPq and the Universidade Federal do Acre, supported my visit to the. following institutions (and colleagues) to examine their vertebrate collections: iii . ; ; Universidade do Amazonas, Manaus
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • Coexistence of Confamilial, Folivorous Indriids, Propithecus Diadema And
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2017 Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar Lana Kerker Oliver Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biodiversity Commons, Biological and Physical Anthropology Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Oliver, Lana Kerker, "Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar" (2017). Arts & Sciences Electronic Theses and Dissertations. 1134. https://openscholarship.wustl.edu/art_sci_etds/1134 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Anthropology Dissertation Examination Committee Crickette Sanz, Chair Kari Allen Benjamin Z. Freed Jane Phillips-Conroy David Strait Mrinalini Watsa Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict
    [Show full text]
  • The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
    The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène.
    [Show full text]
  • For Peer Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Page 1 of 57 Journal of Morphology provided by Archivio della Ricerca - Università di Pisa 1 2 3 Title: The locomotion of Babakotia radofilai inferred from epiphyseal and diaphyseal 4 5 6 morphology of the humerus and femur. 7 8 9 Damiano Marchi1,2*, Christopher B. Ruff3, Alessio Capobianco, 1,4, Katherine L. Rafferty5, 10 11 Michael B. Habib6, Biren A. Patel2,6 12 13 14 1 15 Department of Biology, University of Pisa, Pisa, Italy, 56126 16 17 2 18 Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South 19 20 Africa, WITS 2050 For Peer Review 21 22 23 3 Center for Functional Anatomy and Evolution, Johns Hopkins University School of 24 25 26 Medicine, Baltimore, MD 21111 27 28 4 29 Scuola Normale Superiore, Pisa, Italy, 56126 30 31 5 32 Department of Orthodontics, School of Dentistry, University of Washington, Seattle, WA 33 34 35 98195 36 37 6 38 Department of Cell and Neurobiology, Keck School of Medicine, University of Southern 39 40 California, Los Angeles, CA 90033 41 42 43 Text pages: 28; Bibliography pages: 9; Figures: 6; Tables: 6 Appendices: 1 44 45 46 Running title: Babakotia radofilai postcranial suspensory adaptations 47 48 49 *Corresponding author: 50 51 52 Damiano Marchi 53 54 55 56 Address: Dipartimento di Biologia, Università di Pisa, Via Derna, 1 - ZIP 56126, Pisa - Italy 57 58 59 Ph: +39 050 2211350; Fax: +39 050 2211475 60 1 John Wiley & Sons Journal of Morphology Page 2 of 57 1 2 3 Email: [email protected]
    [Show full text]
  • A Chronology for Late Prehistoric Madagascar
    Journal of Human Evolution 47 (2004) 25e63 www.elsevier.com/locate/jhevol A chronology for late prehistoric Madagascar a,) a,b c David A. Burney , Lida Pigott Burney , Laurie R. Godfrey , William L. Jungersd, Steven M. Goodmane, Henry T. Wrightf, A.J. Timothy Jullg aDepartment of Biological Sciences, Fordham University, Bronx NY 10458, USA bLouis Calder Center Biological Field Station, Fordham University, P.O. Box 887, Armonk NY 10504, USA cDepartment of Anthropology, University of Massachusetts-Amherst, Amherst MA 01003, USA dDepartment of Anatomical Sciences, Stony Brook University, Stony Brook NY 11794, USA eField Museum of Natural History, 1400 S. Roosevelt Rd., Chicago, IL 60605, USA fMuseum of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA gNSF Arizona AMS Facility, University of Arizona, Tucson AZ 85721, USA Received 12 December 2003; accepted 24 May 2004 Abstract A database has been assembled with 278 age determinations for Madagascar. Materials 14C dated include pretreated sediments and plant macrofossils from cores and excavations throughout the island, and bones, teeth, or eggshells of most of the extinct megafaunal taxa, including the giant lemurs, hippopotami, and ratites. Additional measurements come from uranium-series dates on speleothems and thermoluminescence dating of pottery. Changes documented include late Pleistocene climatic events and, in the late Holocene, the apparently human- caused transformation of the environment. Multiple lines of evidence point to the earliest human presence at ca. 2300 14C yr BP (350 cal yr BC). A decline in megafauna, inferred from a drastic decrease in spores of the coprophilous fungus Sporormiella spp. in sediments at 1720 G 40 14C yr BP (230e410 cal yr AD), is followed by large increases in charcoal particles in sediment cores, beginning in the SW part of the island, and spreading to other coasts and the interior over the next millennium.
    [Show full text]
  • Fleagle and Lieberman 2015F.Pdf
    15 Major Transformations in the Evolution of Primate Locomotion John G. Fleagle* and Daniel E. Lieberman† Introduction Compared to other mammalian orders, Primates use an extraordinary diversity of locomotor behaviors, which are made possible by a complementary diversity of musculoskeletal adaptations. Primate locomotor repertoires include various kinds of suspension, bipedalism, leaping, and quadrupedalism using multiple pronograde and orthograde postures and employing numerous gaits such as walking, trotting, galloping, and brachiation. In addition to using different locomotor modes, pri- mates regularly climb, leap, run, swing, and more in extremely diverse ways. As one might expect, the expansion of the field of primatology in the 1960s stimulated efforts to make sense of this diversity by classifying the locomotor behavior of living primates and identifying major evolutionary trends in primate locomotion. The most notable and enduring of these efforts were by the British physician and comparative anatomist John Napier (e.g., Napier 1963, 1967b; Napier and Napier 1967; Napier and Walker 1967). Napier’s seminal 1967 paper, “Evolutionary Aspects of Primate Locomotion,” drew on the work of earlier comparative anatomists such as LeGros Clark, Wood Jones, Straus, and Washburn. By synthesizing the anatomy and behavior of extant primates with the primate fossil record, Napier argued that * Department of Anatomical Sciences, Health Sciences Center, Stony Brook University † Department of Human Evolutionary Biology, Harvard University 257 You are reading copyrighted material published by University of Chicago Press. Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal and injures the author and publisher. fig. 15.1 Trends in the evolution of primate locomotion.
    [Show full text]
  • Duke University Dissertation Template
    Lemur Teeth in Three Keys: Dietary Adaptation, Ecospace Occupation, and Macroevolutionary Dynamics by Ethan L. Fulwood Department of Evolutionary Anthropology Duke University Date:_______________________ Approved: ___________________________ Doug Boyer, Supervisor ___________________________ Richard Kay, Chair ___________________________ Daniel McShea ___________________________ Blythe Williams ___________________________ Elizabeth St. Clair Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Evolutionary Anthropology in the Graduate School of Duke University 2019 ABSTRACT iv Lemur Teeth in Three Keys: Dietary Adaptation, Ecospace Occupation, and Macroevolutionary Dynamics by Ethan Fulwood Department of Evolutionary Anthropology Duke University Date:_______________________ Approved: ___________________________ Doug Boyer, Supervisor ___________________________ Richard Kay, Chair ___________________________ Daniel McShea ___________________________ Blythe Williams ___________________________ Elizabeth St. Clair An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Evolutionary Anthropology in the Graduate School of Duke University 2019 Copyright by Ethan Fulwood 2019 Abstract Dietary adaptation appears to have driven many aspects of the high-level diversification of primates. Dental topography metrics provide a means of quantifying morphological correlates of dietary adaptation
    [Show full text]
  • On a New Melanosuchus Species (Alligatoroidea: Caimaninae) from Solimões Formation (Eocene-Pliocene), Northern Brazil, and Evolution of Caimaninae
    Zootaxa 4894 (4): 561–593 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4894.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:19BD5D89-5C9C-4111-A271-98E819A03D8E On a new Melanosuchus species (Alligatoroidea: Caimaninae) from Solimões Formation (Eocene-Pliocene), Northern Brazil, and evolution of Caimaninae JONAS PEREIRA DE SOUZA-FILHO1,2*, EDSON GUILHERME1,3, PETER MANN DE TOLEDO5, ISMAR DE SOUZA CARVALHO6, FRANCISCO RICARDO NEGRI7, ANDRÉA APARECIDA DA ROCHA MACIENTE1,4, GIOVANNE M. CIDADE8, MAURO BRUNO DA SILVA LACERDA9 & LUCY GOMES DE SOUZA10* 1Laboratório de Pesquisas Paleontológicas (LPP), Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, BR 364, Km 04, 69.920-900, Rio Branco, Acre, Brazil. 2 �[email protected]; https://orcid.org/0000-0003-0481-3204 3 �[email protected]; https://orcid.org/0000-0001-8322-1770 4 �[email protected]; https://orcid.org/0000-0003-3504-1833 5INPE—Instituto Nacional de Pesquisas Espaciais, MCT, São José dos Campos, São Paulo, Brazil. �[email protected]; https://orcid.org/0000-0003-4265-2624 6Departamento de Geologia, CCMN–IGEO, Universidade Federal do Rio de Janeiro, 21.910-200, Cidade Universitária—Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil. �[email protected]; https://orcid.org/0000-0002-1811-0588 7Laboratório de Paleontologia, Universidade Federal do Acre—Campus Floresta, 69895-000, Cruzeiro do Sul, Acre, Brazil. �[email protected]; https://orcid.org/0000-0001-9292-7871 8Laboratório de Estudos Paleobiológicos, Departamento de Biologia, Universidade Federal de São Carlos—Campus Sorocaba, 18052–780, Sorocaba, São Paulo, Brazil.
    [Show full text]
  • Dental Topography Indicates Ecological Contraction of Lemur Communities
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 148:215–227 (2012) Dental Topography Indicates Ecological Contraction of Lemur Communities Laurie R. Godfrey,1* Julia M. Winchester,2,3 Stephen J. King,1 Doug M. Boyer,2,4 and Jukka Jernvall3 1Department of Anthropology, University of Massachusetts, Amherst, MA 01003 2Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794-8081 3Institute for Biotechnology, University of Helsinki, Helsinki, Finland 4Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY 11210-2850 KEY WORDS dental ecology; complexity (OPCR); Dirichlet normal energy (DNE); subfossil lemurs ABSTRACT Understanding the paleoecology of extinct subfossil lemurs and compared these values to those of subfossil lemurs requires reconstruction of dietary prefer- an extant lemur sample. The two metrics succeeded in ences. Tooth morphology is strongly correlated with diet separating species in a manner that provides insights in living primates and is appropriate for inferring dietary into both food processing and diet. We used them to ecology. Recently, dental topographic analysis has shown examine the changes in lemur community ecology in great promise in reconstructing diet from molar tooth Southern and Southwestern Madagascar that accompa- form. Compared with traditionally used shearing metrics, nied the extinction of giant lemurs. We show that the dental topography is better suited for the extraordinary poverty of Madagascar’s frugivore community is a long- diversity of tooth form among subfossil lemurs and has standing phenomenon and that extinction of large-bodied been shown to be less sensitive to phylogenetic sources of lemurs in the South and Southwest resulted not merely shape variation.
    [Show full text]
  • Evolution of Body Size in Anteaters and Sloths (Xenarthra, Pilosa): Phylogeny, Metabolism, Diet and Substrate Preferences N
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106, 289–301, 2017 Evolution of body size in anteaters and sloths (Xenarthra, Pilosa): phylogeny, metabolism, diet and substrate preferences N. Toledo1,2, M.S. Bargo2,3, S.F. Vizcaı´no1,2, G. De Iuliis4 and F. Pujos5 1 CONICET – La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina. Email: [email protected] 2 Divisio´n Paleontologı´a Vertebrados, Unidades de Investigacio´n Anexo Museo FCNyM-UNLP, Av. 60 y 122, 1900, La Plata, Argentina. 3 Comisio´n de Investigaciones Cientı´ficas, Buenos Aires, Argentina. 4 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto M5S 3G5, Ontario, Canada; Section of Palaeobiology, Department of Natural History, Royal Ontario Museum, 100 Queen’s Park Crescent, Toronto M5S 2C6, Ontario, Canada. 5 IANIGLA,CCT-CONICET-Mendoza,Av.RuizLeals/n,ParqueGral.SanMartı´n, 5500 Mendoza, Argentina. ABSTRACT: Pilosa include anteaters (Vermilingua) and sloths (Folivora). Modern tree sloths are represented by two genera, Bradypus and Choloepus (both around 4–6 kg), whereas the fossil record is very diverse, with approximately 90 genera ranging in age from the Oligocene to the early Holocene. Fossil sloths include four main clades, Megalonychidae, Megatheriidae, Nothrotheriidae, and Mylo- dontidae, ranging in size from tens of kilograms to several tons. Modern Vermilingua are represented by three genera, Cyclopes, Tamandua and Myrmecophaga, with a size range from 0.25 kg to about 30 kg, and their fossil record is scarce and fragmentary. The dependence of the body size on phylo- genetic pattern of Pilosa is analysed here, according to current cladistic hypotheses.
    [Show full text]
  • Ancient DNA from Giant Extinct Lemurs Verifies Single Origin of Malagasy
    Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates K. Praveen Karanth†‡, Thomas Delefosse§, Berthe Rakotosamimanana¶, Thomas J. Parsonsʈ, and Anne D. Yoder†‡†† †Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208105, New Haven, CT 06520; §Laboratoire Codgene, 11 Rue Humann, 67085 Strasbourg, France; ¶34 Cite´ des Professeurs, Fort-Duchesne, Antananarivo 101, Madagascar; and ʈArmed Forces DNA Identification Laboratory, The Armed Forces Institute of Pathology, 1413 Research Boulevard, Rockville, MD 20850 Edited by Elwyn L. Simons, Duke University Primate Center, Durham, NC, and approved February 8, 2005 (received for review November 9, 2004) The living Malagasy lemurs constitute a spectacular radiation of >50 species that are believed to have evolved from a common ancestor that colonized Madagascar in the early Tertiary period. Yet, at least 15 additional Malagasy primate species, some of which were relative giants, succumbed to extinction within the past 2,000 years. Their existence in Madagascar is recorded predominantly in its Holocene subfossil record. To rigorously test the hypothesis that all endemic Malagasy primates constitute a monophyletic group and to determine the evolutionary relationships among living and extinct taxa, we have conducted an ancient DNA analysis of subfossil species. A total of nine subfossil individuals from the extinct genera Palaeopropithecus and Megaladapis yielded ampli- fiable DNA. Phylogenetic analysis of cytochrome b sequences derived from these subfossils corroborates the monophyly of endemic Malagasy primates. Our results support the close rela- tionship of sloth lemurs to living indriids, as has been hypothesized on morphological grounds. In contrast, Megaladapis does not show a sister-group relationship with the living genus Lepilemur.
    [Show full text]