Data Security Collection with LEA Cipher for Iot-Based Monitoring

Total Page:16

File Type:pdf, Size:1020Kb

Data Security Collection with LEA Cipher for Iot-Based Monitoring EasyChair Preprint № 1421 Data Security Collection With LEA Cipher For IoT-Based Monitoring Xuelan Yang and Tao Hai EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair. August 25, 2019 Data Security Collection With LEA Cipher For IoT- Based Monitoring 1 2 Xuelan Yang , Tao Hai 1 Baoji University of Art and Science, Shaanxi, China 2 Baoji University of Art and Science, Shaanxi, China Abstract. There are tremendous security concerns with patient health monitoring sensors in Internet of Things (IoT). The concerns are also realized by recent sophisticated security and privacy attacks, including data breaching, data integrity, and data collusion. Conventional solutions often offer security to patients health monitoring data during the communication. However, they often fail to deal with complicated attacks at the time of data conversion into cipher and after the cipher transmission. In this paper, we first study privacy and security concerns with health-care data acquisition and then transmission. Then, we propose a secure data collection scheme for IoT-based healthcare system named SecureData with the aim to tackle security concerns similar to the above. SecureData scheme is composed of four layers: 1) IoT network sensors/devices; 2) Fog layers; 3) cloud computing layer; and 4) healthcare provider layer. We mainly contribute to the first three layers. For the first two layers, SecureData includes two techniques: 1) light-weight field programmable gate array (FPGA) hardware-based cipher algorithm and 2) secret cipher share algorithm. We study KATAN algorithm and we implement and optimize it on the FPGA hardware platform, while we use the idea of secret cipher sharing technique to protect patients’ data privacy. At the cloud computing layer, we apply a distributed database technique that includes a number of cloud data servers to guarantee patients’ personal data privacy at the cloud computing layer. The performance of SecureData is validated through simulations with FPGA in terms of hard-ware frequency rate, energy cost, and computation time of all the algorithms and the results show that SecureData can be efficent when applying for protecting security risks in IoT-based healthcare. Keywords: Data collection, hardware-based security, healthcare, Internet of Things (IoT), privacy, secret cipher, threats. 1 Introduction INTERNET of Things (IoT) consists of automatically and grated in machines and physical objects. IoT technologies lead our life to interact with the sensors/devices 2 of the world and leverages collected smart data from them to facilitates our life so easy and convenience [1]–[5]. These technologies have now been known as an example of a smart cyber-physical systems, which also incorporate technologies of many related emerging systems, including smart energy and grids, smart power plants, smart home monitoring, smart cities, and smart healthcare system [6]–[8]. In smart healthcare applications, IoT sensors/devices are introduced to patients in aspects. The patients’ health infor-mation (data) are collected from ECG, fetal monitors, temperature, or blood glucose levels and safety of this data is crucial regarding patients’ lives. Computer science and IoT community, and healthcare providers have been struggling secure each and every sensor/device in the IoT network with the integrity of its data. Though the safety and comfort of patients’ everyday health relies on this data collection, the safety of the data is greatly affected by cyber threats/attacks. In addition, patients’ privacy sensitive data can also be affected. Conventional solutions often offer security to patients’ health monitoring data during the communication. However, they often fail to deal with complicated attacks at the time of data conversion into cipher and after the cipher transmission. Ransomware, DDoS attacks, insider, e-mail compromise, and fraud scams are com-mon types of attacks in healthcare [9]. Besides, there are types of attacks that are very related to communication, including eavesdropping, impersonation, data integrity, data breach, collusion, and so on. Particularly, these threats/attacks bring new challenges, for example, data can be compromised during the data communication [1], by which patients ’ personal data can be revealed. Circumstances similar to the above prevent the conscious-ness of patients ’ healthcare in IoT future, when these situations are not handled timely and properly. Though there exist various security protocols to protect data from the threats/attacks, including encryption and authentication algorithms, MAC algorithms, public-key cryptosystems, k-anonymity, and so on [10]–[16]. They also have different limitations in terms of processor performance (frequency), energy cost, computation cost, etc., when applying them in IoT-based healthcare. Though many existing work provide security to patients ’ data privacy over communication, they may not protect the dataonce a cloud server is negotiated, especially when a cloud 81 server is under attacks by the insider or cloud provider. The IoT paradigm still requires efficient solutions to protect patient data against cyber threats/attacks throughout the way from the IoT sensors toward the healthcare provider. In this paper, we envisage to contribute to the protection of IoT-based healthcare data. At fi rst, we study the privacy and security concerns with healthcare data acquisition and transmission. Then, we present a secure data collection scheme for IoT-based healthcare system named SecureData with the aim to tackle security concerns like the above. As shown in Fig. 1, SecureData 3 scheme is composed of four layers: 1) IoT network sensors/devices layer; 2) Fog layer; 3) cloud computing layer; and 4) healthcare service provider. We mainly contribute to the first three layers. For the first two layers, SecureData includes two techniques: 1) lightweight fi eld programmable gate array (FPGA) hardware-based cipher algorithm and 2) secret cipher share algorithm. That is, for the fi rst two layers, SecureData includes two techniques: 1) light-weight FPGA hardware-based KATAN ciphers for secured communication and 2) secret cipher share algorithm. For the KATAN ciphers, we study KATAN algorithm as one representative encryption algorithm of block ciphers [17]and we optimize it on the FPGA hardware platform. In the secret cipher sharing, a whole cipher is broken into a number of shares at the Fog computing layer. The shares are 106 sent through secure communication separately toward the cloud. We apply the Slepian – Wolf coding-based secret sharing (SW-SCSS) in SecureData. Share repairing is used in case of data loss or compromise for patients ’ data privacy. At the cloud computing layer, SecureData include a number of cloud data servers [18], [19] to guarantee patients’ personal data privacy. Our contributions in this paper are fourfold. 1) We first investigate security challenges with data collection and then propose a secured data collection scheme for IoT-based healthcare called SecureData. 2) For data collection with security, we present KATAN secret cipher algorithm that is implemented and optimized on the FPGA hardware platform. 3) For data collection with privacy, we apply a new idea of secret cipher share with share repairing and share reconstruction at the cloud computing layer. 4) The performance of SecureData is validated through simulations of both KATAN secret cipher algorithm and 125 secret cipher share algorithm in terms of hardware frequency rate, energy cost, and computation time of all the 127 algorithms. The results show that SecureData can beefficient to the security and privacy of patients’ data in 128 IoT-based healthcare. This paper is organized as follows. First, we describe the security challenges and threat models. Then, we present the design of the SecureData scheme. Next, we present the KATAN secret cipher algorithm. Next, we propose the SW-SCSS algorithm. Then, we give the implementation and evaluation. Finally, we offer the conclusion of this paper with future work. 4 2 Security Challenges and Threat Models For IoT-based Water Quality Monitoring In this section, we discuss challenges to data security in IoT-based Water Quality Monitoring and security threat models. 2.1 Security Challenges in IoT-based Water Quality Monitoring Over these years, sensor technologies and cloud computing technologies are rapidly industrialized with many facilities, services, and applications incorporating the technologies into our daily life such as water quality monitoring system. In smart IoT-based water quality monitoring system applications, the wireless sensing devices collect and incorporate data on water quality and relay the data to a personal wireless IoT device. For instance, water quality data includes pH, tubidity, dissolved oxygen or active microorganism levels. Similarly, in Fig. 2, we provide a Fog layer node to store the access logs data each day of the water. Those logs` data is clearly privacy-sensitive data. The Fog layer can utilize the Fog nodes to mitigate a tremendous amount of loads on the water quality monitoring`s Web logs data storage, data management, and data communication while being able to protect the privacy of the data. The data is then transferred to data storage for the judgement of water quality. Nonetheless, a good amount of data transmitted by IoT sensor system is sensitive data. As a result, the sensitive data collection is subject to performance of the security and
Recommended publications
  • Zero Correlation Linear Cryptanalysis on LEA Family Ciphers
    Journal of Communications Vol. 11, No. 7, July 2016 Zero Correlation Linear Cryptanalysis on LEA Family Ciphers Kai Zhang, Jie Guan, and Bin Hu Information Science and Technology Institute, Zhengzhou 450000, China Email: [email protected]; [email protected]; [email protected] Abstract—In recent two years, zero correlation linear Zero correlation linear cryptanalysis was firstly cryptanalysis has shown its great potential in cryptanalysis and proposed by Andrey Bogdanov and Vicent Rijmen in it has proven to be effective against massive ciphers. LEA is a 2011 [2], [3]. Generally speaking, this cryptanalytic block cipher proposed by Deukjo Hong, who is the designer of method can be concluded as “use linear approximation of an ISO standard block cipher - HIGHT. This paper evaluates the probability 1/2 to eliminate the wrong key candidates”. security level on LEA family ciphers against zero correlation linear cryptanalysis. Firstly, we identify some 9-round zero However, in this basic model of zero correlation linear correlation linear hulls for LEA. Accordingly, we propose a cryptanalysis, the data complexity is about half of the full distinguishing attack on all variants of 9-round LEA family code book. The high data complexity greatly limits the ciphers. Then we propose the first zero correlation linear application of this new method. In FSE 2012, multiple cryptanalysis on 13-round LEA-192 and 14-round LEA-256. zero correlation linear cryptanalysis [4] was proposed For 13-round LEA-192, we propose a key recovery attack with which use multiple zero correlation linear approximations time complexity of 2131.30 13-round LEA encryptions, data to reduce the data complexity.
    [Show full text]
  • On the NIST Lightweight Cryptography Standardization
    On the NIST Lightweight Cryptography Standardization Meltem S¨onmez Turan NIST Lightweight Cryptography Team ECC 2019: 23rd Workshop on Elliptic Curve Cryptography December 2, 2019 Outline • NIST's Cryptography Standards • Overview - Lightweight Cryptography • NIST Lightweight Cryptography Standardization Process • Announcements 1 NIST's Cryptography Standards National Institute of Standards and Technology • Non-regulatory federal agency within U.S. Department of Commerce. • Founded in 1901, known as the National Bureau of Standards (NBS) prior to 1988. • Headquarters in Gaithersburg, Maryland, and laboratories in Boulder, Colorado. • Employs around 6,000 employees and associates. NIST's Mission to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life. 2 NIST Organization Chart Laboratory Programs Computer Security Division • Center for Nanoscale Science and • Cryptographic Technology Technology • Secure Systems and Applications • Communications Technology Lab. • Security Outreach and Integration • Engineering Lab. • Security Components and Mechanisms • Information Technology Lab. • Security Test, Validation and • Material Measurement Lab. Measurements • NIST Center for Neutron Research • Physical Measurement Lab. Information Technology Lab. • Advanced Network Technologies • Applied and Computational Mathematics • Applied Cybersecurity • Computer Security • Information Access • Software and Systems • Statistical
    [Show full text]
  • LEA 192: High Speed Architecture of Lightweight Block Cipher
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-2S, December 2019 LEA 192: High Speed Architecture of Lightweight Block Cipher Zeesha Mishra, Shubham Mishra, Bibhudendra Acharya The communication among connected things must be secure Abstract: High-throughput lightweight cryptography and fast while processing confidential data. Due to a calculation is the need of the present world to convey between two substantial amount of sensitive and valuable data and low asset obliged devices Pipelining is the technique have been used computational resources in the network, it has become to achieve high throughput. In this paper we have target to cumbersome to provide security in the IoT[2]. lightweight block cipher LEA. Block size of LEA is 128 and key Resource-constrained applications comprising of sensor size 128, 192, and 256 bit. In this paper we have focus on LEA architecture for 192- bit key size and achieve very good nodes in wireless sensor networks, RFID tags require smaller throughput. This method has a higher capability of throughput as footprint with minimum battery consumption. compared to previous LEA ciphers. Proposed work is 56% LEA[3] is a lightweight block cipher. LEA has 128-bit improved version of compared paper for respective Speed and block size with 128, 192, 256-bit key sizes and rounds 24, 28 area also less than previous architecture. Graph representation and 32 respectively. LEA supports simple ARX (addition have been shown of different matrices and comparison. rotation XOR ) operation, LEA is not using complex S-box Keywords : ARX, Block Cipher, Cryptography, LEA, structure like AES [4] hence it will give high-speed Lightweight, Pipeline, Throughput.
    [Show full text]
  • State of the Art in Lightweight Symmetric Cryptography
    State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing.
    [Show full text]
  • Tongan Ways of Talking
    TONGAN WAYS OF TALKING MELENAITE TAUMOEFOLAU University of Auckland Some excellent work has been published on Tongan speech levels from a sociolinguistic perspective (e.g., Philips 1991). The purpose of this article is to contribute to the literature by describing some important, not previously well-described features of ways of talking (WOT) in Tongan. I will use as my theoretical framework George Grace’s theory of language; he argued that a language is “a generalized way of talking about things” (Grace 1987: 99), a device for saying things, and it is, in turn, made up of “conventionalized ways of talking about consecrated subject-matters” (p. 103). In this article I will distinguish the following “ways of talking” (WOT):1 WOT 1. lea fakatu‘i—way of talking to or about the monarch/king (tu‘i) WOT 2. lea fakahouhou‘eiki—way of talking to or about chiefly people (hou‘eiki) WOT 3. lea fakamatäpule—polite way of talking that is characteristic of titled orators (matäpule) WOT 4. lea fakatökilalo / faka‘aki‘akimui—self-derogatory way of talking when addressing those of higher rank WOT 5. lea tavale—way of talking to a person with whom one is familiar or with whom one is socially equal, or way of talking to or about commoners (tu‘a) WOT 6. lea ‘ita—abusive way of talking Here I make four main claims about Tongan ways of talking: • The number of registers described for Tongan has been underestimated. I distinguish six (above) instead of the three that are traditionally described: of king—tu‘i, of chiefs—hou‘eiki, of commoners—tu‘a.
    [Show full text]
  • Partly-Pseudo-Linear Cryptanalysis of Reduced-Round SPECK
    cryptography Article Partly-Pseudo-Linear Cryptanalysis of Reduced-Round SPECK Sarah A. Alzakari * and Poorvi L. Vora Department of Computer Science, The George Washington University, 800 22nd St. NW, Washington, DC 20052, USA; [email protected] * Correspondence: [email protected] Abstract: We apply McKay’s pseudo-linear approximation of addition modular 2n to lightweight ARX block ciphers with large words, specifically the SPECK family. We demonstrate that a pseudo- linear approximation can be combined with a linear approximation using the meet-in-the-middle attack technique to recover several key bits. Thus we illustrate improvements to SPECK linear distinguishers based solely on Cho–Pieprzyk approximations by combining them with pseudo-linear approximations, and propose key recovery attacks. Keywords: SPECK; pseudo-linear cryptanalysis; linear cryptanalysis; partly-pseudo-linear attack 1. Introduction ARX block ciphers—which rely on Addition-Rotation-XOR operations performed a number of times—provide a common approach to lightweight cipher design. In June 2013, a group of inventors from the US’s National Security Agency (NSA) proposed two families of lightweight block ciphers, SIMON and SPECK—each of which comes in a variety of widths and key sizes. The SPECK cipher, as an ARX cipher, provides efficient software implementations, while SIMON provides efficient hardware implementations. Moreover, both families perform well in both hardware and software and offer the flexibility across Citation: Alzakari, S.; Vora, P. different platforms that will be required by future applications [1,2]. In this paper, we focus Partly-Pseudo-Linear Cryptanalysis on the SPECK family as an example lightweight ARX block cipher to illustrate our attack.
    [Show full text]
  • Triathlon of Lightweight Block Ciphers for the Internet of Things
    Triathlon of Lightweight Block Ciphers for the Internet of Things Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and Alex Biryukov SnT and CSC, University of Luxembourg Maison du Nombre, 6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg {dumitru-daniel.dinu,yann.lecorre,dmitry.khovratovich,leo.perrin}@uni.lu {johann.groszschaedl,alex.biryukov}@uni.lu Abstract. In this paper we introduce a framework for the benchmarking of lightweight block ciphers on a multitude of embedded platforms. Our framework is able to evaluate the execution time, RAM footprint, as well as binary code size, and allows one to define a custom “figure of merit” according to which all evaluated candidates can be ranked. We used the framework to benchmark implementations of 19 lightweight ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED, Piccolo, PRE- SENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin, Simon, SPARX, Speck, and TWINE, on three microcontroller platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM. Our results bring some new insights to the question of how well these lightweight ciphers are suited to secure the Internet of Things (IoT). The benchmarking framework provides cipher designers with an easy-to-use tool to compare new algorithms with the state-of-the-art and allows standardization organizations to conduct a fair and consistent evaluation of a large number of candidates. Keywords: IoT, lightweight cryptography, block ciphers, evaluation framework, benchmarking. 1 Introduction The Internet of Things (IoT) is a frequently-used term to describe the currently ongoing evolution of the Internet into a network of smart objects (“things”) with the ability to communicate with each other and to access centralized resources via the IPv6 (resp.
    [Show full text]
  • BRISK: Dynamic Encryption Based Cipher for Long Term Security
    sensors Article BRISK: Dynamic Encryption Based Cipher for Long Term Security Ashutosh Dhar Dwivedi Cyber Security Section, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected] or [email protected] Abstract: Several emerging areas like the Internet of Things, sensor networks, healthcare and dis- tributed networks feature resource-constrained devices that share secure and privacy-preserving data to accomplish some goal. The majority of standard cryptographic algorithms do not fit with these constrained devices due to heavy cryptographic components. In this paper, a new block cipher, BRISK, is proposed with a block size of 32-bit. The cipher design is straightforward due to simple round operations, and these operations can be efficiently run in hardware and suitable for software. Another major concept used with this cipher is dynamism during encryption for each session; that is, instead of using the same encryption algorithm, participants use different ciphers for each session. Professor Lars R. Knudsen initially proposed dynamic encryption in 2015, where the sender picks a cipher from a large pool of ciphers to encrypt the data and send it along with the encrypted message. The receiver does not know about the encryption technique used before receiving the cipher along with the message. However, in the proposed algorithm, instead of choosing a new cipher, the process uses the same cipher for each session, but varies the cipher specifications from a given small pool, e.g., the number of rounds, cipher components, etc. Therefore, the dynamism concept is used here in a different way.
    [Show full text]
  • Ten Strategies of a World-Class Cybersecurity Operations Center Conveys MITRE’S Expertise on Accumulated Expertise on Enterprise-Grade Computer Network Defense
    Bleed rule--remove from file Bleed rule--remove from file MITRE’s accumulated Ten Strategies of a World-Class Cybersecurity Operations Center conveys MITRE’s expertise on accumulated expertise on enterprise-grade computer network defense. It covers ten key qualities enterprise- grade of leading Cybersecurity Operations Centers (CSOCs), ranging from their structure and organization, computer MITRE network to processes that best enable effective and efficient operations, to approaches that extract maximum defense Ten Strategies of a World-Class value from CSOC technology investments. This book offers perspective and context for key decision Cybersecurity Operations Center points in structuring a CSOC and shows how to: • Find the right size and structure for the CSOC team Cybersecurity Operations Center a World-Class of Strategies Ten The MITRE Corporation is • Achieve effective placement within a larger organization that a not-for-profit organization enables CSOC operations that operates federally funded • Attract, retain, and grow the right staff and skills research and development • Prepare the CSOC team, technologies, and processes for agile, centers (FFRDCs). FFRDCs threat-based response are unique organizations that • Architect for large-scale data collection and analysis with a assist the U.S. government with limited budget scientific research and analysis, • Prioritize sensor placement and data feed choices across development and acquisition, enteprise systems, enclaves, networks, and perimeters and systems engineering and integration. We’re proud to have If you manage, work in, or are standing up a CSOC, this book is for you. served the public interest for It is also available on MITRE’s website, www.mitre.org. more than 50 years.
    [Show full text]
  • Differential Fault Attack On
    Differential Fault Attack on LEA Dirmanto Jap1 and Jakub Breier2 1School of Physical and Mathematical Sciences Nanyang Technological University, Singapore [email protected] 2Physical Analysis and Cryptographic Engineering Temasek Laboratories at Nanyang Technological University, Singapore [email protected] Abstract. LEA is a symmetric block cipher proposed in 2014. It uses ARX design and its main advantage is the possibility of a fast software implementation on common computing platforms. In this paper we propose a Differential Fault Analysis attack on LEA. By injecting random bit faults in the last round and in the penultimate round, we were able to recover the secret key by using 258 faulty encryp- tions in average. If the position of faults is known, then only 62 faulty encryptions are needed in order to recover the key which surpasses the results achieved so far. Keywords: LEA, Fault Attack, DFA 1 Introduction Today's applications require efficient ciphers that can run on small devices with constrained computing power. Recent trends show an increasing number of ser- vices intended for Internet of Things [8, 5] requiring both high level of security and fast running speed on embedded devices. For such applications, lightweight cryptography is an ideal choice. LEA [6] is a symmetric block cipher, using the ARX design (modular Ad- dition, bitwise Rotation, and bitwise XOR). It offers fast software encryption, comparable to lightweight ciphers, and comes in the same key size variants as AES. There is an exhaustive security analysis report published by Bogdanov et al. [2], stating that the cipher is secure against known cryptanalysis attacks.
    [Show full text]
  • A Survey of ARX-Based Symmetric-Key Primitives
    397 International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 3, December 2019 A Survey of ARX-based Symmetric-key Primitives Nur Fasihah Mohd Esa1, Shekh Faisal Abdul-Latip1 and Mohd Rizuan Baharon1 1INSFORNET Centre for Advanced Computing Technology, Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka Abstract: Addition Rotation XOR is suitable for fast and fast software-oriented implementation. Nevertheless, the implementation symmetric –key primitives, such as stream and security properties are still not well studied in literature as block ciphers. This paper presents a review of several block and compared to SPN and Feistel ciphers. stream ciphers based on ARX construction followed by the Observation of addition from [4]: First, addition modulo discussion on the security analysis of symmetric key primitives n where the best attack for every cipher was carried out. We 2 on the window can be approximated by addition modulo benchmark the implementation on software and hardware platforms according to the evaluation metrics. Therefore, this paper aims at . Second, this addition gives a perfect approximation if providing a reference for a better selection of ARX design strategy. the carry into the window is estimated correctly. The probability distribution of the carry is generated, depending Keywords: ARX, cryptography, cryptanalysis, design, stream on the probability of approximation correctness. The ciphers, block ciphers. probability of the carry is independent of w; in fact, for 1. Introduction uniformly distributed addends it is , where The rapid development of today’s computing technology has is the position of the least significant bit in the window. made computer devices became smaller which in turn poses Thirdly, the probability of correctness for a random guess of a challenge to their security aspects.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan
    70 - 1 4 ,1 1 6 WENGER, Marion Roy, 1932- A SWISS-GERMAN DIALECT STUDY: THREE LIN­ GUISTIC ISLANDS IN MIDWESTERN U .S.A . [Sampler Tape Recording not included with microfilm. Available for ct-nsultation at The Ohio State University Library!]. The Ohio State University, Ph.D., 1969 Language and Literatui?e, linguistics University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIIŒD A SWISS-GERMAN DIALECT STUDY: THREE LINGUISTIC ISLANDS IN MIDWESTERN U.S.A. DISSERTATION Presented in Partial Fulfillment of the Requirements for. the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Marion Roy Wenger, B. A ., M. A. » The Ohio State University 1969 Approved by m/j A dviser Departmène of German ACKNOWLEDGMENTS Two men are primarily responsible for the stimulation which led to this dissertation: Professor Wolfgang Fleischhauer and Professor Dieter Cunz. As a "Doktorvater", Professor Fleischhauer has been all things to me: first, the conscientious and enthusiastic teacher guiding my first steps in research, subsequently, the openhanded elder scholar sharing his own discoveries with me and, most importantly, a warm friend in­ spiring me and others with his "menschliche W krm eFrom him, with him, through him, I came to an appreciation of dialect research as an eminently humane study beyond the austerity of linguistic inquiry, the formal analysis of symbols and the description of their configuration. This tribute also commemorates Professor Cunz, who found time to take a personal interest in my own historical heritage and urged me to work that cultural lode. Throughout this protracted research pro­ ject, he remained constant in his kindly, but firm encouragement, the "benevolent despot" beyond compare, whom we now miss keenly.
    [Show full text]