European Ectoparasitoids of Two Classical Weed Biological Control Agents Released in North America
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Revised List of the Weevil Subfamily Ceutorhynchinae
J. Asia-Pacific Entomol. 7(2): 143 -169 (2004) www.entornology.or.kr A Revised List of the Weevil Subfamily Ceutorhynchinae (Coleoptera; Curculionidae) of the Korean Fauna, with Contribution to the Knowledge of the Fauna of Neighbouring Countries Boris A. Korotyaev and Ki-Jeong Hong' Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia I Central Post-Entry Quarantine Station, National Plant Quarantine Service, Suwon 442-400, Korea Abstract 58 species are recorded from Korea based preceding publications (Hong et al., 1999a, 1999b; on re-examination ofthe previously reported material Hong et al., 2000; Hong et Korotyaev, 2002) and and study ofa new one. Six new species (Rutidosorna investigation ofadditional material on distribution and koreanurnKorotyaev et Hong, sp. n., Calosirus kwoni host plants of the Ceutorhynchinae in Korea have Korotyaev et Hong, sp. n., MJgulones kwoni Korotyaev provided new data on this fauna. Although still quite et Hong, sp. n., Augustinus koreanus Korotyaev et incomplete, these data stimulate some speculations on Hong, sp. n., Ceutorhynchoides koreanus Korotyaev the ecological and geographical characteristics of the et Hong, sp. n. and Mecysrnoderes koreanus Korotyaev Korean fauna. We hope that some preliminary con et Hong, sp. n.) are described from Korea, and siderations reported herein may facilitate further study 5 species [Pelenomus waltoni (Boheman, 1843), ofthis group in Korea and the entire Far East. Several Ceutorhynchus scapularis Gyllenhal, 1837,Hadroplontus new species are described from the neighbouring ancora (Roelofs, 1875), Thamiocolus kerzhneri countries apparently vicar to the Korean species or Korotyaev, 1980 and Glocianus fennicus (Faust, probably occurring in Korea but not found yet. -
Biological Control of Canada Thistle PROJECT MANAGER
Project Abstract For the Project Ending June 30, 2019 PROJECT TITLE: Biological Control of Canada Thistle PROJECT MANAGER: Roger Becker AFFILIATION: Department of Agronomy and Plant Genetics, University of Minnesota MAILING ADDRESS: 411 Borlaug Hall, 1991 Upper Buford Circle CITY/STATE/ZIP: St. Paul, MN 55108 PHONE: 612-625-5753 E-MAIL: [email protected] WEBSITE: https://appliedweeds.cfans.umn.edu FUNDING SOURCE: Environment and Natural Resources Trust Fund LEGAL CITATION: M.L. 2015, Chp. 76, Sec. 2, Subd. 06c APPROPRIATION AMOUNT: $300,000 AMOUNT SPENT: $300,000 AMOUNT REMAINING: $0 Overall Project Outcome and Results Canada thistle is a serious threat to natural and managed ecosystems in Minnesota. In 1998, the Canada thistle biocontrol stem-mining weevil Hadroplontus litura was introduced into a limited area in Minnesota with a resulting decline in Canada thistle populations. Although showing a preference for Canada thistle, initial host range testing of H. litura revealed that it attacked other native thistles. Before continuing biocontrol efforts with additional H. litura releases in Minnesota, we wanted to clarify whether H. litura would attack thistles native to Minnesota. The two objectives of our research were: 1.) determine whether H. litura could feed, oviposit and complete development on native thistles, and 2.) determine the phenology of native thistles in relation to Canada thistle. In no-choice tests, female H. litura accepted all native thistle species for oviposition and was able to complete development to the adult stage on swamp, field, tall, Flodman’s and wavy-leaved thistle. In Hill’s and the federally threatened Pitcher’s thistle, no adults were found in development tests. -
20140620 Thesis Vanklink
University of Groningen Of dwarves and giants van Klink, Roel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Klink, R. (2014). Of dwarves and giants: How large herbivores shape arthropod communities on salt marshes. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Roel van Klink This PhD-project was carried out at the Community and Conservation Ecology group, which is part of the Centre for Ecological and Environmental Studies of the University of Groningen, The Netherlands. -
2021 Biennial Report Complete
This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp LEGISLATIVE-CITIZEN COMMISSION ON MINNESOTA RESOURCES 100 REV. DR. MARTIN LUTHER KING JR. BLVD. Phone: (651) 296-2406 ROOM 65 STATE OFFICE BUILDING Email: [email protected] ST. PAUL, MINNESOTA 55155-1201 Web: www.lccmr.leg.mn TTY: (651) 296-9896 or 1-800-657-3550 Becca Nash, Director Date: January 15, 2021 To: Governor Tim Walz Chair, Senate Finance Committee, Senator Julie Rosen Minority Lead, Senate Finance Committee, Senator John Marty Chair, Senate Environment and Natural Resources Finance Committee, Senator Bill Ingebrigtsen Minority Lead, Senate Environment and Natural Resources Finance Committee, Senator Patricia Torres Ray Chair, House Ways and Means Committee, Representative Rena Moran Minority Lead, House Ways and Means Committee, Representative Pat Garofalo Chair, House Environment and Natural Resources Finance and Policy Committee, Representative Rick Hansen Minority Lead, House Environment and Natural Resources Finance and Policy Committee, Representative Josh Heintzeman Legislative Reference Library From: Legislative-Citizen Commission on Minnesota Resources (LCCMR) Subject: Biennial Report required by M.S. 116P.09, Subd. 7 The LCCMR biennial report as required in M.S. 116P.09, Subd. 7 from the Legislative-Citizen Commission on Minnesota Resources (LCCMR) due January 15, 2021 is hereby transmitted. It is available in a CD or print format upon request or on the LCCMR web site at: https://www.lccmr.leg.mn/documents/biennial_rpt/2021/2021_biennial_report.html. The report covers LCCMR actions from January 1, 2019 to December 31, 2020, including summaries of past funding accomplishments and new recommendations for funding from the Environment and Natural Resources Trust Fund (ENRTF). -
Field Guidecontrol of Weeds
US Department of Agriculture FOR THE BIOLOGICALFIELD GUIDECONTROL OF WEEDS IN THE NORTHWEST Rachel Winston, Carol Bell Randall, Rosemarie De Clerck-Floate, Alec McClay, Jennifer Andreas and Mark Schwarzländer Forest Health Technology FHTET-2014-08 Enterprise Team May 2014 he Forest Health Technology Enterprise Team (FHTET) was created in T1995 by the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photos: Aphthona nigriscutis (R. Richard, USDA APHIS), Mecinus spp. (Bob Richard, USDA APHIS PPQ), Chrysolina hypericic quadrigemina, Eustenopus villosus (Laura Parsons & Mark Schwarzländer, University of Idaho), Cyphocleonus achates (Jennifer Andreas, Washington State University Extension) The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326- W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. -
Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada
143 Chapter 4 Weevils (Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada Robert S. Anderson Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada, K1P 6P4 Email: [email protected] Patrice Bouchard* Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6 Email: [email protected] *corresponding author Hume Douglas Entomology, Ottawa Plant Laboratories, Canadian Food Inspection Agency, Building 18, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6 Email: [email protected] Abstract. Weevils are a diverse group of plant-feeding beetles and occur in most terrestrial and freshwater ecosystems. This chapter documents the diversity and distribution of 295 weevil species found in the Canadian Prairies Ecozone belonging to the families Dryophthoridae (9 spp.), Brachyceridae (13 spp.), and Curculionidae (273 spp.). Weevils in the Prairies Ecozone represent approximately 34% of the total number of weevil species found in Canada. Notable species with distributions restricted to the Prairies Ecozone, usually occurring in one or two provinces, are candidates for potentially rare or endangered status. Résumé. Les charançons forment un groupe diversifié de coléoptères phytophages et sont présents dans la plupart des écosystèmes terrestres et dulcicoles. Le présent chapitre décrit la diversité et la répartition de 295 espèces de charançons vivant dans l’écozone des prairies qui appartiennent aux familles suivantes : Dryophthoridae (9 spp.), Brachyceridae (13 spp.) et Curculionidae (273 spp.). Les charançons de cette écozone représentent environ 34 % du total des espèces de ce groupe présentes au Canada. Certaines espèces notables, qui ne se trouvent que dans cette écozone — habituellement dans une ou deux provinces — mériteraient d’être désignées rares ou en danger de disparition. -
Ceutorhynchus Obstrictus – North America
4. Host-Specificity Testing: 4.1 Selection of non-target test arthropods Peter G. Mason Agriculture and Agri-Food Canada, Ottawa, CANADA Biological Control Expert Group Workshop Ottawa, Ontario, Canada July 7-8, 2015 Background • Why is this needed? Background • Detailed ecological studies and increasing awareness of the environment led to discoveries of unintended effects – Rhinocyllus conicus – Compsilura concinnata – Cactoblastis cactorum – Microctonus aethiopoides 3 Background Harmonia axyridis 4 Background Results “Five (Belgium) and seven (Britain) of eight species studied show substantial declines attributable to the arrival of H. axyridis.” Main conclusion “… these analyses show H. axyridis to be displacing native ladybirds with high niche overlap, probably through predation and competition.” “Predatory ladybirds are known to provide a major ecosystem service by regulating pest insects. Although H. axyridis is an effective biological control agent in crop systems …, it is unclear whether it can fulfil all the functional roles of the species it is displacing. Harmonia axyridis is rapidly expanding its global range: our results imply that this will cause ecological extinctions … of native species, notably deciduous tree specialists, over large areas.” Information requirements 4.0 Host Specificity Testing 4.1 Selection of non-target test arthropods: typically, species, genera and other taxonomically closely-related arthropods and arthropods recorded as hosts in the literature, on museum labels or in other unpublished collection records, agriculture pest reports, etc.; hosts of close relatives (i.e. in the same genus) of the candidate agent; unrelated arthropods having physical and ecological similarities to the pest, rare and endangered species (or their surrogates), beneficial species that may be encountered, species of cultural or indigenous significance, and economically important arthropods. -
Mechanisms of Cabbage Seedpod Weevil Resistance
University of Alberta Mechanisms of cabbage seedpod weevil, Ceutorhynchus obstrictus , resistance associated with novel germplasm derived from Sinapis alba x Brassica napus by James Allen Tansey A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science Department of Agricultural, Food and Nutritional Sciences ©James Allen Tansey Fall, 2009 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. University of Alberta Faculty of Graduate Studies and Research The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled ‘Mechanisms of cabbage seedpod weevil, Ceutorhynchus obstrictus resistance associated with novel germplasm derived from Sinapis alba x Brassica napus ’ submitted by James A. Tansey in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Agricultural, Food and Nutritional Science. Examining Committee Dr. Lloyd M. Dosdall, Agricultural, Food and Nutritional Science Dr. -
Ensuring the Safety of Classical Biological Control for Cabbage
Ensuring the Safety of Classical Biological Control for Cabbage Seedpod Weevil in Canada: Assessment of the Ecological Host Range of Candidate Ectoparasitoids in Europe and Clarification of their Taxonomic Status Dissertation to obtain the Ph. D. degree in the Faculty of Agricultural Sciences, Georg-August-University Göttingen, Germany presented by Franck Muller born in Clamart, France Göttingen, July 2006 D7 1. Referee: Prof. Dr. Stefan Vidal 2. Co-referee: Prof. Dr. Teja Tscharntke 3. Examiner: Prof. Dr. Matthias Schaefer Date of dissertation: 13 Juli 2006 Summary Summary Classical biological control of insect pests and weeds can lead to potential conflicts, particularly if the insect pest and weed agents are closely related. Such a conflict may occur in biological control of the Cabbage Seedpod Weevil (CSPW), Ceutorhynchus obstrictus (Marsham) [=C. assimilis (Paykull); see Colonnelli (2004)] (Coleoptera: Curculionidae), which belongs to the same subfamily, Ceutorhynchinae, as a number of agents introduced or proposed for introduction against invasive alien weed species in North America. The CSPW is a serious pest of canola and rapeseed in North America. Some of the known European parasitoids such as Trichomalus perfectus Walker and Mesopolobus morys Walker (both Hym.; Pteromalidae) show the greatest potential for incorporation into an IPM programme in North America and are currently being considered for introduction. Prior to importation, several issues have to be assessed, and results are presented here: Taxonomy of the European species of the genus Trichomalus and Mesopolobus associated to Ceutorhynchinae hosts were revised and illustrated keys provided to ensure up to date information is available to biological control practitioners. A three years field survey has been carried out in five European countries to field collect Ceutorhynchinae hosts, rear their ectoparasitoids and identify them. -
Chapter 12. Biocontrol Arthropods: New Denizens of Canada's
291 Chapter 12 Biocontrol Arthropods: New Denizens of Canada’s Grassland Agroecosystems Rosemarie De Clerck-Floate and Héctor Cárcamo Agriculture and Agri-Food Canada, Lethbridge Research Centre 5403 - 1 Avenue South, P.O. Box 3000 Lethbridge, Alberta, Canada T1J 4B1 Abstract. Canada’s grassland ecosystems have undergone major changes since the arrival of European agriculture, ranging from near-complete replacement of native biodiversity with annual crops to the effects of overgrazing by cattle on remnant native grasslands. The majority of the “agroecosystems” that have replaced the historical native grasslands now encompass completely new associations of plants and arthropods in what is typically a mix of introduced and native species. Some of these species are pests of crops and pastures and were accidentally introduced. Other species are natural enemies of these pests and were deliberately introduced as classical biological control (biocontrol) agents to control these pests. To control weeds, 76 arthropod species have been released against 24 target species in Canada since 1951, all of which also have been released in western Canada. Of these released species, 53 (70%) have become established, with 18 estimated to be reducing target weed populations. The biocontrol programs for leafy spurge in the prairie provinces and knapweeds in British Columbia have been the largest, each responsible for the establishment of 10 new arthropod species on rangelands. This chapter summarizes the ecological highlights of these programs and those for miscellaneous weeds. Compared with weed biocontrol on rangelands, classical biocontrol of arthropod crop pests by using arthropods lags far behind, mostly because of a preference to manage crop pests with chemicals. -
Insect Fauna of Korea
Insect Fauna of Korea Volume 12, Number 2 Arthropoda: Insecta: Coleoptera: Curculionidae: Bagoninae, Baridinae, Ceutorhynchinae, Conoderinae, Cryptorhynchinae, Molytinae, Orobitidinae Weevils I 2011 National Institute of Biological Resources Ministry of Environment Insect Fauna of Korea Volume 12, Number 2 Arthropoda: Insecta: Coleoptera: Curculionidae: Bagoninae, Baridinae, Ceutorhynchinae, Conoderinae, Cryptorhynchinae, Molytinae, Orobitidinae Weevils I Ki-Jeong Hong, Sangwook Park1 and Kyungduk Han2 National Plant Quarantine Service 1Research Institute of Forest Insects Diversity 2Korea University Copyright ⓒ 2011 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Gyeongseo-dong, Seo-gu Incheon 404-708, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN : 9788994555461-96470 Government Publications Registration Number 11-1480592-000149-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher : Chong-chun Kim Project Staff : Hong-Yul Seo, Ye Eun, Joo-Lae Cho Published on February 28, 2011 The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. The book cover and the logo were designed by Jee-Yeon Koo. Preface Biological resources are important elements encompassing organisms, genetic resources, and parts of organisms which provide potential values essential for human lives. The creation of high-valued products such as new varieties of organisms, new substances, and the development of new drugs by harnessing biological resources is now widely perceived to be one of the major indices of national competitiveness. -
Download PDF Reprint
J. Appl. Entomol. 130(8), 401–409 (2006) doi: 10.1111/j.1439-0418.2006.01085.x Ó 2006 Agric. & Agri-Food Canada Journal compilation Ó 2006 Blackwell Verlag, Berlin Importance of long-term research in classical biological control: an analytical review of a release against the cabbage seedpod weevil in North America D. R. Gillespie1, P. G. Mason2, L. M. Dosdall3, P. Bouchard2 and G. A. P. Gibson2 1Agriculture and Agri-Food Canada, Research Centre, Agassiz, British Columbia; 2Agriculture and Agri-Food Canada, Research Centre, Ottawa, Ontario; 3Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada Ms. received: April 18, 2006; accepted: July 3, 2006 Abstract: Cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Col., Curculionidae), is an invasive alien pest that is spreading in North America. To aid with planning for introductions of European parasitoids in North America, we examined the status of the only classical biological control release against this pest in North America, which in 1949 introduced Mesopolobus morys, Stenomalina gracilis and Trichomalus perfectus (Hym., Pteromalidae). Weevils and parasitoids were reared in 2005 from mass collections of seedpods of Brassica napus, Brassica rapa and Raphanus raphanistrum (Brassicaceae) from 18 sites in the Fraser Valley, near Vancouver, British Columbia, Canada. Of the three European parasitoid species that were originally released, only S. gracilis was found. The predominant hymenopterous parasitoid species were Trichomalus lucidus, S. gracilis, Mesopolobus moryoides (Pteromalidae), Necremnus tidius (Eulophidae) and Eupelmus vesicularis (Eupelmidae). These constituted over 97% of the parasitoids reared, although overall parasitism was low. Only M. moryoides is clearly North American in distribution; other than S.