Exploring and Modeling the Chemical Effect of A

Total Page:16

File Type:pdf, Size:1020Kb

Exploring and Modeling the Chemical Effect of A Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low- Octane Gasoline fuel Minh Duy Le, Mickaël Matrat, Arij Amara, Fabrice Foucher, Bruno Moreau, Yi Yu, Pierre-Alexandre Glaude To cite this version: Minh Duy Le, Mickaël Matrat, Arij Amara, Fabrice Foucher, Bruno Moreau, et al.. Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low- Octane Gasoline fuel. SAE Technical papers, SAE International, 2019, 10.4271/2019-24-0069. hal-02394139 HAL Id: hal-02394139 https://hal.archives-ouvertes.fr/hal-02394139 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low- Octane Gasoline fuel Minh Duy Le, Mickael Matrat, and Arij Ben Amara IFP Energies Nouvelles Fabrice Foucher, Bruno Moreau, and Yi Yu PRISME, Université d'Orléans Pierre-Alexandre Glaude LRGP, CNRS-Université de Lorraine Abstract To replace fossil fuels, renewable energy sources such as biofuel or natural gas have been studied and used in different kind of engines [5, 6]. In the near future, taking advantage of all petroleum fractions is one Recent internal combustion (IC) engine developments focus on of the most efficient way in using petroleum fuels. In this scope, low gasoline fuel. This requires a better understanding of fuel reactivity at octane gasoline fuel is of interest. The benefits of this kind of fuel link different thermodynamic conditions. Gasoline fuel reactivity control to its low cost thanks to simple treatment in petroleum refineries. This by additives is an efficient method to get better IC engine fuel can be used in many moderns IC engines presented previously performances. 2-Ethylhexyl nitrate (EHN) promoting effect (0.1 - 1% such as SACI or GCI. mol.) on combustion has been investigated experimentally and numerically. Rapid compression machine (RCM) experiments were carried out at equivalence ratio 0.5 at 10 bar, from 675 to 995 K. The Fuel additives have been used to control the fuel reactivity in many targeted surrogate fuel is a mixture of toluene and n-heptane in order types of engines [7, 8]. EHN is a conventional additive used to enhance to capture the additive effect on both cool flame and main ignition. A the reactivity of diesel fuels. The EHN efficiency has been investigated kinetic model was developed from literature data assembly and in many types of engines operating at low temperature [9, 10]. Ghosh validated upon a large set of variations including species profiles and et al. [11], by carrying out cetane number (CN) measurements in ignition delays of pure compounds as well as mixtures. At the ignition quality tester (IQT), observed that EHN effectiveness in CN experimental conditions, it was found that the EHN reduces the boosting increases with the base fuel reactivity. In order to ignition delay time (IDT) of the surrogate fuel in the whole temperature fundamentally understand EHN effect, previous academic studies range. EHN effectiveness tends to be minimum around 705 K and investigated the EHN effect on the autoignition of gasoline fuels increases with temperature. The results also indicate that EHN effect having a different reactivity [12, 13]. These studies underline a increases nonlinearly with EHN doping levels. Numerical analyses complex promoting effect of EHN that depends on the thermodynamic conditions, the doping level and the fuel chemical composition. Since revealed that the EHN effect is linked to NO2-NO loops, which enhances fuel reactivity. The methodology proposed here enable to EHN decomposes to an alkoxy radical and NO2 at relatively low simulate the EHN effect with simple compounds rather than the full temperature [14], the chemical effect of EHN depends on both the EHN chemistry set. This strategy could simplify the consideration of derived radicals and the nitrogen chemistry. Hartmann et al. [12] and additive effect when computational fluid dynamics (CFD) simulations Goldsborough et al. [13] developed kinetic models to predict EHN are performed on engine. Finally, the study also highlights the EHN behavior in mixture with n-heptane and two reference fuels (n-heptane/ effectiveness on several thermodynamic conditions as well as iso-octane/ toluene mixtures) respectively. These modeling works equivalence ratios. The objective is to assess its performance upon reveal that two mains items need to be improved: (1) the prediction of large operating conditions which appears to be of interest with novel the base fuel reactivity and (2) the coupling of nitrogen chemistry with combustion systems targeting low temperature as well as lean hydrocarbons. Indeed, a confident prediction of base fuel reactivity is combustion. an important step to ensure a better investigation of EHN effect. Moreover, detailed mechanisms regarding nitrogen chemistry interactions with large hydrocarbons still need to be explored, Introduction especially for lean mixtures. Worldwide transport is actually powered nearly entirely by IC engines. In order to assess the effect of a nitrogen containing additive under Their contribution in this sector is expected to be still very high in the different conditions, this study aims at: (1) investigating next few decades. Novel combustion systems, such as spark assisted experimentally and numerically the EHN effect at typical dopant compression ignition (SACI) [1] or gasoline compression ignition amounts (0.1 - 1% mol.) on the autoignition behavior of a low-octane (GCI) [2] are being developed for better performances. These gasoline surrogate fuel in lean combustion; (2) understanding the combustion systems aim at increasing the engine efficiency. Their chemical effect of EHN on the fuel reactivity at different operation in lean combustion is a lever to reach this objective. This thermodynamic conditions and (3) investigating numerically EHN combustion mode operates in low temperature, which can result in low effect in various fuels, whose reactivity are different depending on the nitrogen oxides (NOx) and soot emissions. The main disadvantages of operating conditions. The employed fuel surrogate in experiments is a lean combustion are over-frequent misfire and engine instability [3]. mixture of n-heptane and toluene with a research octane number In addition, the novel combustion systems currently investigated tend (RON) of 84 which falls into a low octane gasoline range. The mixture to explore new thermodynamic conditions for the combustion of also offers the possibility to evaluate both the additive effect on high gasoline fuels. Thus, reactivity control is one of the most difficult temperature and low temperature with two stage ignitions due to a non- challenges regarding these engine developments. This task requires negligible amount of alkane. In this study, IDT were measured in a both experimental and simulations results. CFD simulations are a RCM and a detailed kinetic mechanism containing nitrogen chemistry reliable method of engine simulation [4]. This kind of simulations for fuel/EHN mixture was developed thanks to the assembly of require a simple but robust kinetic model to reduce computational cost. literature data. Page 1 of 8 Experiments 30 Main IDT 6000 The single piston RCM of PRISME laboratory was used in this study. The details of this RCM can be found elsewhere [15]. A creviced piston was employed to limit the formation of a roll-up vortex during 20 st 4000 the compression and maintain the post-compression charge 1 -stage IDT homogeneity. The main characteristics of the RCM of PRISME laboratory are summarized in the table 1. dP/dt (bar/s) dP/dt Pressure (bar)Pressure 10 2000 End of Table 1. RCM main characteristics. compression Compression time 35 ms 0 0 Time P /2 to P (t ) 4 ms max max 50 0 50 100 150 Piston acceleration/deceleration time 15/5 ms Time (ms) Crevice volume 9.94 cm3 Compression ratio 8.9; 12.9; 20.7 Figure 1. Typical pressure (blue line) and dP/dt (red line) profiles in RCM experiment. Experimental condition: surrogate fuel, Φ = 0.5, 705 K, 10 bar. Stroke, bore 300 mm, 50 mm The intake pressure was measured by a Keller PAA-33X/80794 Kinetic Modeling piezoresistive transducer. The in-cylinder pressure history was registered thanks to a piezoresistive AVL QH32C transducer. The A kinetic model was developed to simulate the EHN effect on the fuel temperatures including intake temperature and piston initial surrogate. This model contains three sub-mechanisms describing temperature were controlled by K thermocouples. The Brooks Cori- chemistry of the base fuel, of EHN and of nitrogenous molecules. The Flows M13V101 were used to regulate the mass flow rates. The sub-mechanism of the base fuel was adopted from the model of experimental uncertainties of intake pressure, in-cylinder pressure, Lawrence Livermore National Laboratory (LLNL) [16], which intake temperatures and mass flowrate are ±1 mbar, ±1%, ±2 K, ±1%, contains detailed chemistry of toluene and n-heptane. The toluene sub- respectively. mechanism was then updated following mostly the recent study of aromatic molecules by Yuan et al. [17]. The updated reactions include The high purity liquid fuels used in this study are from Sigma-Aldrich: the elementary reactions of toluene and its derived radicals and toluene (99.8%), n-heptane (99%), EHN (97%). To fulfill the desired molecules, e.g., phenyl, benzyl, methylphenyl, cresoxy radicals, gas mixture, the synthetic air (21% O2, 79% N2) and high purity phenol, cresol and small unsaturated compounds C2-C4. The nitrogen (> 99.999%) from Air Liquide are used.
Recommended publications
  • Fuel Property Impact on a Premixed Diesel Combustion Mode
    FUEL PROPERTY IMPACT ON A PREMIXED DIESEL COMBUSTION MODE by Andrew M. Ickes A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in the University of Michigan 2009 Doctoral Committee: Professor Dionissios N. Assanis, Co-Chair Assistant Research Scientist Stani V. Bohac, Co-Chair Professor James F. Driscoll Professor Volker Sick Patrick G. Szymkowicz, General Motors Corporation © Andrew M. Ickes 2009 ACKNOWLEDGEMENTS As expected, there are many people whose contribution over the course of my graduate studies bears acknowledgement. I am gratefully indebted to all who either contributed to the work described within this dissertation or to me personally during the time spent working on it. First and foremost, I must thank Professor Dennis Assanis for the opportunity to work in his laboratory and for his years of support. Additionally, I must acknowledge the contributions of Research Scientist Stani Bohac, my other co-chair, who has provided substantial guidance for this work. I am grateful for the financial support of General Motors Corporation, who sponsored this work through the framework of the General Motors/University of Michigan Collaborative Research Laboratory in Engine Systems Research. I am additionally thankful for the technical reviews, planning, and intellectual advice offered by staff of the GM Diesel Research group. I must also recognize two people who have provided and coordinated opportunities that have contributed significantly to where I am now: Scott Fiveland of Caterpillar, and Professor Bryan Willson of Colorado State University. I am ever so grateful for my longstanding friendship with Kristen Mills. A true friend, and present through so much of my graduate school years.
    [Show full text]
  • Experimental Study of Using Butanol Or Octanol Blends As Alternative Fuels in Diesel Engines
    THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING in Thermo and Fluid Dynamics Experimental Study of Using Butanol or Octanol Blends as Alternative Fuels in Diesel Engines TANKAI ZHANG Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2016 Experimental Study of Using Butanol or Octanol Blends as Alternative Fuels in Diesel Engines TANKAI ZHANG © TANKAI ZHANG, 2016 THESIS FOR LICENTIATE OF ENGINEERING no 2016:05 ISSN 1652-8565 Department of Applied Mechanics Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone +46 (0)31 772 1000 Chalmers Reproservice Gothenburg, Sweden 2016 Abstract With the increased travel demand, the consumption of fossil fuels, as the main energy source for transportation, has risen sharply over the last few decades. Fossil fuels are considered a non- renewable resource. In addition, burning them in internal combustion engines can generate a large amount of greenhouse gas (GHG) emissions. According to the life-cycle assessment, use of renewable fuels as alternatives in diesel engines can help to dramatically reduce GHG emissions. Furthermore, the oxygen content in alcohols may help to suppress soot formation significantly. Therefore, mixing renewable alcohols in diesel fuel may offer a potential solution for reducing GHG emissions, soot emissions and fossil fuel consumption. Hence, it is important to investigate the possibility of using alcohol/diesel blends in existing diesel engines. To reproduce the characteristics of existing engines as closely as possible, a light duty (LD) single-cylinder engine, a heavy duty (HD) single-cylinder engine and a four-cylinder LD engine were employed with production engine settings. In both types of single-cylinder engine, engine performance and emissions were studied under steady-state conditions.
    [Show full text]
  • Determination of 2-Ethylhexyl Nitrate in Diesel Oil Using a Single
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Insausti and Fernández Band, J Fundam Renewable Energy Appl 2014, 4:2 Fundamentals of Renewable http://dx.doi.org/10.4172/2090-4541.1000137 Energy and Applications Research Article Open Access Determination of 2-ethylhexyl Nitrate in Diesel Oil Using a Single Excitation Emission Fluorescence Spectra (EEF) and Chemometrics Analysis Matías Insausti and Beatriz S Fernández Band* Departamento de Química, Universidad Nacional del Sur, Buenos Aires, Argentina Abstract A highly sensitive spectrofluorimetric method has been developed for the determination of 2-ethylhexyl nitrate in diesel fuel. Usually, this compound is used as an additive in order to improve cetane number. The analytical method consists in building the chemometric model as a first step. Then, it is possible to quantify the analyte with only recording a single excitation-emission fluorescence spectrum (EEF), whose data are introduced in the chemometric model above mentioned. Another important characteristic of this method is that the fuel sample was used without any pre-treatment for EEF. This work provides an interest improvement to fluorescence techniques using the rapid and easily applicable EEF approach to analyze such complex matrices. Exploding EEF was the key to a successful determination, obtaining a detection limit of 0.00434% (v/v) and a limit of quantification of 0.01446% (v/v). Keywords: Diesel oil; Fluorescence; Chemometrics; Additive; The ASTM D 4046 standard test method is used for determining 2-ethylhexyl nitrate the amount of alkyl nitrate added to diesel fuel to judge compliance with specifications covering any alkyl nitrate.
    [Show full text]
  • Cetane Number – More Is Better
    Cetane Number – More is Better What is a cetane number? Similar to the octane number seen on a retail gasoline dispenser, a cetane number rates a diesel fuel’s quality of ignition. But that’s where the similarities end. The octane number of a gasoline measures its ability to resist auto-ignition commonly referred to as pre- ignition, knocking or pinging. A diesel fuel’s cetane number, however, is actually a measure of the fuel’s ignition delay; the time period between the start of the injection of the fuel and the start of the combustion of the fuel (commonly known as ignition). In general, a higher cetane fuel will have a shorter ignition delay period than a lower cetane fuel. What does a high cetane number mean to a diesel fuel user? Since diesels rely on compression ignition, the fuel must be able to readily auto-ignite and quicker is better. A higher cetane number, indicating a shorter ignition delay time, usually means more complete combustion of the fuel. This translates into: Quicker starting Quieter operation with less diesel chatter Improved fuel efficiency A reduction of harmful emissions Less wear and tear on the starter and batteries Quicker pumping of protective lubricating fluids throughout the system How can a higher cetane number be achieved? There are two ways to gain a higher cetane number. The first is to do it during the refining process. Refining a high cetane diesel fuel usually results in a fuel with a higher API gravity rating and a lower density. A low density fuel contains fewer BTUs and consequently provides less power to a diesel engine.
    [Show full text]
  • Evaluation of Diesel Fuel Cetane and Aromatics Effects on Emissions from Euro-3 Engines
    report no. 4/02 evaluation of diesel fuel cetane and aromatics effects on emissions from euro-3 engines Prepared for the CONCAWE Automotive Emissions Management Group by its Special Task Force AE/STF-18: D H Cuvelier (Chairman) R H Clark R De Craecker H J Guttmann M Honkanen E B M Jansen G Martini E G Reynolds D J Rickeard G Wolff P J Zemroch N D Thompson (Technical Coordinator) Reproduction permitted with due acknowledgement CONCAWE Brussels March 2002 I report no. 4/02 ABSTRACT Following EPEFE, the influence of two important diesel fuel quality parameters on emissions remained under debate. These were the difference (if any) between natural and additive-derived cetane and the influence of aromatics content. Another key issue was how emissions from more modern engines would be influenced by fuel quality. CONCAWE has therefore conducted a rigorous test programme to examine exhaust emissions from 3 light-duty vehicles and 2 heavy-duty engines representing Euro-3 technology levels. Two fuel matrices were tested to evaluate the influence of cetane (natural and improved) and aromatics (mono- versus poly-). Fuel effects were generally small compared to engine technology effects and test variability. Despite the rigorous test design, statistically significant fuel effects were difficult to identify. Increasing cetane number had no significant effect on NOx or PM, but directionally reduced emissions of HC and CO. Cetane trends did not differentiate between natural and additive-derived cetane. Aromatics effects were small and showed variation between vehicles. KEYWORDS exhaust emissions, diesel, diesel fuel, diesel engine, engine technology, vehicle technology, fuel quality, aromatics, mono-aromatics, poly-aromatics, cetane number, cetane improver, Euro-3 INTERNET This report is available as an Adobe pdf file on the CONCAWE website (www.concawe.be).
    [Show full text]
  • Cetane Number Improvement of Distilled Diesel from Tawke Wells
    Engineering, Technology & Applied Science Research Vol. 11 , No. 3, 20 21 , 7195 -7200 7195 Cetane Number Improvement of Distilled Diesel from Tawke Wells Shwan M. Noori Khalifa Majeed Shinwar A. Idrees Zakho Technical Institute Chemistry Department, Faculty of Science Duhok Polytechnic University University of Zakho Zakho, Kurdistan Region, Iraq Zakho, Kurdistan Region, Iraq [email protected] [email protected] Veyan A. Musa Sherwan M. Simo Mechanical Department, College of Engineering Petroleum Engineering Department, College of Engineering University of Zakho University of Zakho Zakho, Kurdistan Region, Iraq Zakho, Kurdistan Region, Iraq [email protected] [email protected] Abraheem A. Mohammed Lokman A. AbdulKareem Chemistry Department, Faculty of Science Petroleum Engineering Department, College of Engineering University of Zakho University of Zakho Zakho, Kurdistan Region, Iraq Zakho, Kurdistan Region, Iraq [email protected] [email protected] Abstract-The current research aims to improve the cetane search for new improvers is in great demand. The utilizing of number of diesel extracted from the crude oil of Tawke region in influential improvers is very essential in order to reach the Iraqi Kurdistan. A specific mixture of chemical compounds was requested mechanical and environmental standards [2]. In the prepared which included m-nitrophenol, 4-nitro toluene, and past, attempts have been made to ignite fuel readily and thus nitrobenzene. The components' effects were investigated with upgrade ignition quality. Nitro compounds are commonly used regard to the cetane number, flash point, viscosity, and refractive as cetane number additives and such chemicals make the delay index of diesel.
    [Show full text]
  • Effect of CETANE Improver Additives on Emissions
    International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3372-3375 ISSN: 2249-6645 Effect of CETANE Improver Additives on Emissions K. Velmurugan1, S. Gowthamn2 1M.E-Internal combustion engineering, 2 M.E-Internal combustion engineering Velammal engineering college, Chennai-600053. ABSTRACT: Exhaust gases of an engine can have upto 2000 ppm of oxides of nitrogen.Most of this will be nitrogen oxide(NO), with a small amount of nitrogen dioxide(NO2).NOx is very undesirable.Regulations to reduce NOx emissions continue to become more and more stringent year by year. Released NOx reacts in the atmosphere to form ozone and is one of the major causes of photochemical smog. NOx is created mostly from nitrogen in the air. Nitrogen can also be found in fuel blends. At high temperature and pressure higher levels of NOx is created and at low temperature lower level of NOx is produced. In addition to temperature,the formation of NOx depends on pressure and air-fuel ratio. Engine emission from diesel fuel ,paying special attention to the most concerning emissions. Oxides of nitrogen is not only in mass and composition but also in size distributions. Many of the design changes for reduction in NOx emissions result in higher brake specific fuel consumption. Test is carried out in a single cylinder direct injection diesel engine. Cetane number describes the auto ignition quality of the diesel fuel. Cetane improver additive of neopentane is used with the varying proportions of 1ml,3ml,5ml to the diesel fuel respectively.
    [Show full text]
  • Effect of Cetane Number and Volatility on Autoignition and Combustion of Alternative Fuels and Their Urs Rogates Ziliang Zheng Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2014 Effect Of Cetane Number And Volatility On Autoignition And Combustion Of Alternative Fuels And Their urS rogates Ziliang Zheng Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Mechanical Engineering Commons Recommended Citation Zheng, Ziliang, "Effect Of Cetane Number And Volatility On Autoignition And Combustion Of Alternative Fuels And Their Surrogates" (2014). Wayne State University Dissertations. Paper 947. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. EFFECT OF CETANE NUMBER AND VOLATILITY ON AUTOIGNITION AND COMBUSTION OF ALTERNATIVE FUELS AND THEIR SURROGATES by ZILIANG ZHENG DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2014 MAJOR: MECHANICAL ENGINEERING Approved by: __________________________________________ Advisor Date __________________________________________ __________________________________________ __________________________________________ __________________________________________ © COPYRIGHT BY ZILIANG ZHENG 2014 All Rights Reserved ACKNOWLEDGEMENTS I would like to express my deepest and sincere appreciation to my adviser Prof. Naeim A. Henein, who has offered me the opportunity to be a part of his research group at Wayne State University. He always guided and supported me in all aspects of my research and shared his extraordinary experiences with me throughout all the work. His encyclopedic knowledge has outstandingly inspired and encouraged my growth as a student and a researcher. I will be benefited a great deal from him for the rest of my life.
    [Show full text]
  • |||||IIII US005482.518A United States Patent (19) 11 Patent Number: 5,482,518 Poirier 45) Date of Patent: Jan
    |||||IIII US005482.518A United States Patent (19) 11 Patent Number: 5,482,518 Poirier 45) Date of Patent: Jan. 9, 1996 (54) SYNERGISTIC CETANE IMPROVER 5,258,049 11/1993 Liotta, Jr. .................................. 44/324 COMPOSITION COMPRISING MIXTURE OF ALKYL-NITRATE AND HYDROPEROXDE FOREIGN PATENT DOCUMENTS QUINONE 0293069 11/1988 European Pat. Off.. 0467628 1/1992 European Pat. Off.. (75) Inventor: Marc-Andre Poirier, Sarnia, Canada 0537931 4/1993 European Pat. Off.. 2227751 8/1990 United Kingdom. (73) Assignee: Exxon Research and Engineering 2227752 8/1990 United Kingdom. Company, Florham Park, N.J. 9308244 4/1993 WIPO ............................... C1OL 1122 OTHER PUBLICATIONS (21) Appl. No.: 341,711 ACS, 77: 24850, 1995. 22) Filed: Nov. 18, 1994 "How Do Diesel Fuel Ignition Improvers Work' Clothier, et (51) Int. Cl. ..................... C10L 1/22, C10L 1/18 al. Chem Soc Rev 1993 pp. 101-108 (no month available). (52) U.S. C. .................................. 44/312; 44/322; 44/326 "Reaction of Hindered Phenols II-Base Catalyzed Oxida tion of Hindered Phenols' Kharasch et al. J. Org Chem 22 (58) Field of Search .............................. 44/312,326, 322, Nov. 1957, 1439-1443. 44/349, 437 "Performance and Stability of Some Diesel Fuel Ignition 56) References Cited Quality Improvers'. Robbins, et al., SAE Quarterly Transactions, Jul. 1951, vol. U.S. PATENT DOCUMENTS 5 No. 3 pp. 404-416. 2,107,059 2/1938 Primary Examiner-Margaret Medley 2,210,942 8/1940 Attorney, Agent, or Firm-Joseph J. Allocca 2,580,015 12/1951 2,582,192 1/1952 (57) ABSTRACT 2,912,313 11/1959 Hi 4,330,304 5/1982 Gorman.
    [Show full text]
  • Analysis of the Effects of Cetane Improver Addition to Diesel On
    e-ISSN: 2146 - 9067 International Journal of Automotive Engineering and Technologies journal homepage: https://dergipark.org.tr/en/pub/ijaet Original Research Article Analysis of the effects of cetane improver addition to diesel on engine performance and emissions Süleyman Şimşek 1, Samet Uslu 2* 1 İstanbul Aydın Üniversitesi, Makine Mühendisliği Bölümü, İstanbul, Türkiye 2* Karabük Üniversitesi, Makine Mühendisliği Bölümü, Karabük, Türkiye ARTICLE INFO ABSTRACT The high cetane number of the fuel used in diesel engines is extremely important 1. 0000-0002-0593-8036 as it provides some improvements in combustion in the cylinder. Therefore, the addition of cetane improver to diesel fuel has been highly preferred in recent years. 2. 0000-0001-9118-5108 In this study, the effects of 2-ethylhexyl nitrate (EHN) addition, a cetane improver, on compression ignition engine performance and emissions were analyzed at Doi: 10.18245/ ijaet.798221 various engine loads. Four different fuels were used in the experiments as 100% * Corresponding author diesel (D100), 99% diesel + 1% EHN (D99EHN1), 98% diesel + 2% EHN [email protected] (D99EHN2) and 97% diesel + 3% EHN (D99EHN3). The results obtained from the experiments showed that the addition of 2-EHN positively affected the brake Received: Sept 21, 2020 thermal efficiency (BTHE), hydrocarbon (HC) and carbon monoxide (CO) values, Accepted: Feb 15, 2021 while the brake specific fuel consumption (BSFC), nitrogen oxide (NOx) and smoke emission levels were negatively affected. With high engine load, 2-EHN Published: Mar 31, 2021 supplement marginally rises NOx emissions but significantly declines HC and CO emissions. EHN addition had small impacts on BSFC.
    [Show full text]
  • Petroleum and Chemical Industry International
    ISSN: 2639-7536 Research Article Petroleum and Chemical Industry International Relationship between Fuel Properties and Cetane Response of Cetane Improver for Non-Aromatic and Aromatic Fuels Used In A Single Cylinder Heavy Duty Diesel Engine Dr. Shailesh N. Gadhvi *Corresponding author Dr. Shailesh N. Gadhvi, Tel:+919909908562, E-mail: sgadhavi1710@gmail. com Submitted: 29 Dec 2018; Accepted: 08 Jan 2019; Published: 21 Jan 2019 Abstract Ignition improver additives are used to improve the ignition quality, or reduce the ignition delay; i.e. the time between when fuel is injected and time when combustion start is different this difference in time is minimize by additive is called cetane improver (CN). The Cetane Number (CN) is the most widely accepted measure of ignition quality to get desired value of centane number some additive are used hence ignition improvers are usually characterized by the fact that at what extent they can increase CN. By increasing cetane number we have two benefits that it helps smoother combustion and lower emissions. Fuel properties are always considered as one of the main factors to diesel engines concerning performance of cetane improver. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on cetane improver .In this study to derive the most un-correlating and correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to effect on performance of cetane improver. Introduction engine cetane requirements with fuel cetane number. Diesel fuels Cetane number (CN) is a measure of the ignition quality of the with cetane number lower than minimum engine requirements diesel fuel and is determined by a standard engine test as specified can cause rough engine operation.
    [Show full text]
  • Effect of Cetane Improver Addition Into Diesel Fuel … THERMAL SCIENCE, Year 2017, Vol
    Candan, F., et al.: Effect of Cetane Improver Addition into Diesel Fuel … THERMAL SCIENCE, Year 2017, Vol. 21, No. 1B, pp. 555-566 555 EFFECT OF CETANE IMPROVER ADDITION INTO DIESEL FUEL Methanol Mixtures on Performance and Emissions at Different Injection Pressures by Feyyaz CANDANa, Murat CINIVIZb*, and Ilker ORSc a Department of Motor Vehicles and Transportation Technology, Anadolu BIL Vocational School of Higher Education, Istanbul Aydin University, Istanbul, Turkey b Department of Mechanical Engineering, Technology Faculty, Selcuk University, Konya, Turkey c Department of Motor Vehicles and Transportation Technology, Vocational School of Technical Sciences, Aksaray University, Aksaray, Turkey Original scientific paper DOI: 10.2298/TSCI160430265C In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in or- der to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase sepa- ration of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to metha- nol-mixed fuels, and reduced brake specific fuel consumption values. It also af- fected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels posi- tively.
    [Show full text]