Tabak J Algebra Sets Symbols

Total Page:16

File Type:pdf, Size:1020Kb

Tabak J Algebra Sets Symbols algebra Revised Edition Openmirrors.com THE HISTORY OF algebra sets, symbols, and the language of thought Revised Edition John Tabak, Ph.D. Openmirrors.com ALGEBRA: Sets, Symbols, and the Language of Thought, Revised Edition Copyright © 2011, 2004 by John Tabak, Ph.D. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. An imprint of Infobase Learning 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Tabak, John. Algebra : sets, symbols, and the language of thought / John Tabak—Rev. ed. p. cm.—(The history of mathematics) Includes bibliographical references and index. ISBN 978-0-8160-7944-5 (alk. paper) ISBN 978-1-4381-3585-4 (e-book) 1. Algebra—History. I. Title. QA151.T33 2011 512.009—dc22 2010021597 Facts On File books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Facts On File on the World Wide Web at http://www.infobaselearning.com Excerpts included herewith have been reprinted by permission of the copyright hold- ers; the author has made every effort to contact copyright holders. The publisher will be glad to rectify, in future editions, any errors or omissions brought to its notice. Text design by David Strelecky Composition by Hermitage Publishing Services Illustrations by Dale Williams Photo research by Elizabeth H. Oakes Cover printed by Yurchak Printing, Inc., Landisville, Pa. Book printed and bound by Yurchak Printing, Inc., Landisville, Pa. Date printed: May 2011 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper. To Diane Haber; teacher; mathematician, and inspirator CONTENTS Preface x Acknowledgments xvi Introduction xvii 1 The First Algebras 1 Mesopotamia: The Beginnings of Algebra 1 Mesopotamians and Second-Degree Equations 5 The Mesopotamians and Indeterminate Equations 7 Clay Tablets and Electronic Calculators 8 Egyptian Algebra 10 Chinese Algebra 12 Rhetorical Algebra 15 2 Greek Algebra 18 The Discovery of the Pythagoreans 20 The Incommensurability of √2 24 Geometric Algebra 25 Algebra Made Visible 27 Diophantus of Alexandria 31 3 Algebra from India to Northern Africa 34 Brahmagupta and the New Algebra 36 Mahavira 40 Bhaskara and the End of an Era 42 Poetry and Algebra 45 Islamic Mathematics 45 Al-Khwa¯rizmı¯ and a New Concept of Algebra 48 A Problem and a Solution 52 Omar Khayyám, Islamic Algebra at Its Best 52 Leonardo of Pisa 57 Openmirrors.com 4 Algebra as a Theory of Equations 58 The New Algorithms 61 Algebra as a Tool in Science 67 François Viète, Algebra as a Symbolic Language 68 Thomas Harriot 73 Albert Girard 75 The Fundamental Theorem of Algebra 77 The Importance of Polynomials 81 5 Algebra in Geometry and Analysis 83 René Descartes 85 Descartes on Multiplication 88 Pierre de Fermat 92 Fermat’s Last Theorem 95 The New Approach 97 Polar Coordinates 98 6 The Search for New Structures 102 Niels Henrik Abel 104 Évariste Galois 106 Galois Theory and the Doubling of the Cube 109 Doubling the Cube with a Straightedge and Compass Is Impossible 112 Algebraic Structures 114 The Importance of Group Theory 120 7 The Laws of Thought 124 Aristotle 124 George Boole and the Laws of Thought 127 Boolean Algebra 131 Aristotle and Boole 135 Refining and Extending Boolean Algebra 136 Boolean Algebra and Computers 139 8 The Theory of Matrices and Determinants 142 Early Ideas 144 Spectral Theory 148 The Theory of Matrices 157 Matrix Multiplication 163 Emmy Noether and the Theory of Rings 165 Nicolas Bourbaki and Mathematical Structure 169 The Problem Solvers 172 Conclusion 179 Afterword: An Interview with Dr. Bonita Saunders on the Digital Library of Mathematical Functions 181 Chronology 193 Glossary 210 Further Resources 215 Index 225 PREFACE Of all human activities, mathematics is one of the oldest. Mathematics can be found on the cuneiform tablets of the Mesopotamians, on the papyri of the Egyptians, and in texts from ancient China, the Indian subcontinent, and the indigenous cul- tures of Central America. Sophisticated mathematical research was carried out in the Middle East for several centuries after the birth of Muhammad, and advanced mathematics has been a hallmark of European culture since the Renaissance. Today, mathematical research is carried out across the world, and it is a remarkable fact that there is no end in sight. The more we learn of mathematics, the faster the pace of discovery. Contemporary mathematics is often extremely abstract, and the important questions with which mathematicians concern them- selves can sometimes be difficult to describe to the interested nonspecialist. Perhaps this is one reason that so many histories of mathematics give so little attention to the last 100 years of dis- covery—this, despite the fact that the last 100 years have probably been the most productive period in the history of mathematics. One unique feature of this six-volume History of Mathematics is that it covers a significant portion of recent mathematical history as well as the origins. And with the help of in-depth interviews with prominent mathematicians—one for each volume—it is hoped that the reader will develop an appreciation for current work in mathematics as well as an interest in the future of this remarkable subject. Numbers details the evolution of the concept of number from the simplest counting schemes to the discovery of uncomputable numbers in the latter half of the 20th century. Divided into three parts, this volume first treats numbers from the point of view of computation. The second part details the evolution of the concept of number, a process that took thousands of years and culminated in what every student recognizes as “the real number line,” an x Preface xi extremely important and subtle mathematical idea. The third part of this volume concerns the evolution of the concept of the infi- nite. In particular, it covers Georg Cantor’s discovery (or creation, depending on one’s point of view) of transfinite numbers and his efforts to place set theory at the heart of modern mathematics. The most important ramifications of Cantor’s work, the attempt to axi- omatize mathematics carried out by David Hilbert and Bertrand Russell, and the discovery by Kurt Gödel and Alan Turing that there are limitations on what can be learned from the axiomatic method, are also described. The last chapter ends with the discov- ery of uncomputable numbers, a remarkable consequence of the work of Kurt Gödel and Alan Turing. The book concludes with an interview with Professor Karlis Podnieks, a mathematician of remarkable insights and a broad array of interests. Probability and Statistics describes subjects that have become cen- tral to modern thought. Statistics now lies at the heart of the way that most information is communicated and interpreted. Much of our understanding of economics, science, marketing, and a host of other subjects is expressed in the language of statistics. And for many of us statistical language has become part of everyday dis- course. Similarly, probability theory is used to predict everything from the weather to the success of space missions to the value of mortgage-backed securities. The first half of the volume treats probability beginning with the earliest ideas about chance and the foundational work of Blaise Pascal and Pierre Fermat. In addition to the development of the mathematics of probability, considerable attention is given to the application of probability theory to the study of smallpox and the misapplication of probability to modern finance. More than most branches of mathematics, probability is an applied dis- cipline, and its uses and misuses are important to us all. Statistics is the subject of the second half of the book. Beginning with the earliest examples of statistical thought, which are found in the writings of John Graunt and Edmund Halley, the volume gives special attention to two pioneers of statistical thinking, Karl Pearson and R. A. Fisher, and it describes some especially impor- tant uses and misuses of statistics, including the use of statistics xii ALGEBRA in the field of public health, an application of vital interest. The book concludes with an interview with Dr. Michael Stamatelatos, director of the Safety and Assurance Requirements Division in the Office of Safety and Mission Assurance at NASA, on the ways that probability theory, specifically the methodology of probabi- listic risk assessment, is used to assess risk and improve reliability. Geometry discusses one of the oldest of all branches of mathe- matics. Special attention is given to Greek geometry, which set the standard both for mathematical creativity and rigor for many cen- turies. So important was Euclidean geometry that it was not until the 19th century that mathematicians became willing to consider the existence of alternative and equally valid geometrical systems. This 19th-century revolution in mathematical, philosophical, and scientific thought is described in some detail, as are some alter- natives to Euclidean geometry, including projective geometry, the non-Euclidean geometry of Nikolay Ivanovich Lobachevsky and János Bolyai, the higher (but finite) dimensional geometry of Riemann, infinite-dimensional geometric ideas, and some of the geometrical implications of the theory of relativity. The volume concludes with an interview with Professor Krystyna Kuperberg of Auburn University about her work in geometry and dynamical systems, a branch of mathematics heavily dependent on ideas from geometry.
Recommended publications
  • Twenty Female Mathematicians Hollis Williams
    Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg .............................................................................................................................
    [Show full text]
  • History of Algebra and Its Implications for Teaching
    Maggio: History of Algebra and its Implications for Teaching History of Algebra and its Implications for Teaching Jaime Maggio Fall 2020 MA 398 Senior Seminar Mentor: Dr.Loth Published by DigitalCommons@SHU, 2021 1 Academic Festival, Event 31 [2021] Abstract Algebra can be described as a branch of mathematics concerned with finding the values of unknown quantities (letters and other general sym- bols) defined by the equations that they satisfy. Algebraic problems have survived in mathematical writings of the Egyptians and Babylonians. The ancient Greeks also contributed to the development of algebraic concepts. In this paper, we will discuss historically famous mathematicians from all over the world along with their key mathematical contributions. Mathe- matical proofs of ancient and modern discoveries will be presented. We will then consider the impacts of incorporating history into the teaching of mathematics courses as an educational technique. 1 https://digitalcommons.sacredheart.edu/acadfest/2021/all/31 2 Maggio: History of Algebra and its Implications for Teaching 1 Introduction In order to understand the way algebra is the way it is today, it is important to understand how it came about starting with its ancient origins. In a mod- ern sense, algebra can be described as a branch of mathematics concerned with finding the values of unknown quantities defined by the equations that they sat- isfy. Algebraic problems have survived in mathematical writings of the Egyp- tians and Babylonians. The ancient Greeks also contributed to the development of algebraic concepts, but these concepts had a heavier focus on geometry [1]. The combination of all of the discoveries of these great mathematicians shaped the way algebra is taught today.
    [Show full text]
  • Arithmetical Proofs in Arabic Algebra Jeffery A
    This article is published in: Ezzaim Laabid, ed., Actes du 12è Colloque Maghrébin sur l'Histoire des Mathématiques Arabes: Marrakech, 26-27-28 mai 2016. Marrakech: École Normale Supérieure 2018, pp 215-238. Arithmetical proofs in Arabic algebra Jeffery A. Oaks1 1. Introduction Much attention has been paid by historians of Arabic mathematics to the proofs by geometry of the rules for solving quadratic equations. The earliest Arabic books on algebra give geometric proofs, and many later algebraists introduced innovations and variations on them. The most cited authors in this story are al-Khwārizmī, Ibn Turk, Abū Kāmil, Thābit ibn Qurra, al-Karajī, al- Samawʾal, al-Khayyām, and Sharaf al-Dīn al-Ṭūsī.2 What we lack in the literature are discussions, or even an acknowledgement, of the shift in some authors beginning in the eleventh century to give these rules some kind of foundation in arithmetic. Al-Karajī is the earliest known algebraist to move away from geometric proof, and later we see arithmetical arguments justifying the rules for solving equations in Ibn al-Yāsamīn, Ibn al-Bannāʾ, Ibn al-Hāʾim, and al-Fārisī. In this article I review the arithmetical proofs of these five authors. There were certainly other algebraists who took a numerical approach to proving the rules of algebra, and hopefully this article will motivate others to add to the discussion. To remind readers, the powers of the unknown in Arabic algebra were given individual names. The first degree unknown, akin to our �, was called a shayʾ (thing) or jidhr (root), the second degree unknown (like our �") was called a māl (sum of money),3 and the third degree unknown (like our �#) was named a kaʿb (cube).
    [Show full text]
  • The Persian-Toledan Astronomical Connection and the European Renaissance
    Academia Europaea 19th Annual Conference in cooperation with: Sociedad Estatal de Conmemoraciones Culturales, Ministerio de Cultura (Spain) “The Dialogue of Three Cultures and our European Heritage” (Toledo Crucible of the Culture and the Dawn of the Renaissance) 2 - 5 September 2007, Toledo, Spain Chair, Organizing Committee: Prof. Manuel G. Velarde The Persian-Toledan Astronomical Connection and the European Renaissance M. Heydari-Malayeri Paris Observatory Summary This paper aims at presenting a brief overview of astronomical exchanges between the Eastern and Western parts of the Islamic world from the 8th to 14th century. These cultural interactions were in fact vaster involving Persian, Indian, Greek, and Chinese traditions. I will particularly focus on some interesting relations between the Persian astronomical heritage and the Andalusian (Spanish) achievements in that period. After a brief introduction dealing mainly with a couple of terminological remarks, I will present a glimpse of the historical context in which Muslim science developed. In Section 3, the origins of Muslim astronomy will be briefly examined. Section 4 will be concerned with Khwârizmi, the Persian astronomer/mathematician who wrote the first major astronomical work in the Muslim world. His influence on later Andalusian astronomy will be looked into in Section 5. Andalusian astronomy flourished in the 11th century, as will be studied in Section 6. Among its major achievements were the Toledan Tables and the Alfonsine Tables, which will be presented in Section 7. The Tables had a major position in European astronomy until the advent of Copernicus in the 16th century. Since Ptolemy’s models were not satisfactory, Muslim astronomers tried to improve them, as we will see in Section 8.
    [Show full text]
  • Taming the Unknown. a History of Algebra from Antiquity to the Early Twentieth Century, by Victor J
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 725–731 S 0273-0979(2015)01491-6 Article electronically published on March 23, 2015 Taming the unknown. A history of algebra from antiquity to the early twentieth century, by Victor J. Katz and Karen Hunger Parshall, Princeton University Press, Princeton and Oxford, 2014, xvi+485 pp., ISBN 978-0-691-14905-9, US $49.50 1. Algebra now Algebra has been a part of mathematics since ancient times, but only in the 20th century did it come to play a crucial role in other areas of mathematics. Algebraic number theory, algebraic geometry, and algebraic topology now cast a big shadow on their parent disciplines of number theory, geometry, and topology. And algebraic topology gave birth to category theory, the algebraic view of mathematics that is now a dominant way of thinking in almost all areas. Even analysis, in some ways the antithesis of algebra, has been affected. As long ago as 1882, algebra captured some important territory from analysis when Dedekind and Weber absorbed the Abel and Riemann–Roch theorems into their theory of algebraic function fields, now part of the foundations of algebraic geometry. Not all mathematicians are happy with these developments. In a speech in 2000, entitled Mathematics in the 20th Century, Michael Atiyah said: Algebra is the offer made by the devil to the mathematician. The devil says “I will give you this powerful machine, and it will answer any question you like. All you need to do is give me your soul; give up geometry and you will have this marvellous machine.” Atiyah (2001), p.
    [Show full text]
  • Homotecia Nº 3-10 Marzo 2012
    HOMOTECIA Nº 3 – Año 10 Jueves, 1º de Marzo de 2012 1 Futbol. Seguridad personal. Maltrato Infantil. “Dominó”. Violencia. Este editorial no se hubiera escrito si cuatro noticias que se sucedieron recientemente no hubiesen superado nuestra capacidad de asombro, la cual suponíamos agotada desde hace tiempo. Más que sorprendernos, nos impactaron. Nos hemos de referir a ellas sin seguir el orden cronológico en el cual se sucedieron. Lo cierto está en que cualquier hecho violento puede tener explicación pero en ningún caso justificación. La primera noticia provino de Egipto, haciendo referencia al insólito hecho que después de culminado el partido entre los equipos rivales, los fanáticos del equipo local arremetieron con saña contra los fanáticos del equipo visitante, provocando la muerte de por lo menos setenta personas e hiriendo a más de doscientas. Ya es CLAUDE E. SHANNON costumbre que en un número significativo de los estadios del mundo donde se practica el futbol ocurran (1916-2001) hechos violentos a causa de las divergencias por las preferencias “deportivas” y la defensa a ultranza de "El padre de la teoría de la información" los colores de la divisa admirada, pero en ningún caso llegar a la bestial conducta de acabar con la vida de los semejantes. Y aquí no caben las explicaciones que indicamos al principio del escrito porque el Nació 30 Abril 1916 en Gaylord, Michigan, y equipo del cual eran fanáticos los furibundos agresores ganó el partido. Pensamos: ¿Qué hubiese falleció 24 Febrero de 2001 en Medford, ocurrido si perdía? Aquí no vale ni suspensión del campeonato de liga ni suspensión de por vida del Massachusetts, ambos eventos en Estados Unidos.
    [Show full text]
  • Early History of Algebra: a Sketch
    Math 160, Fall 2005 Professor Mariusz Wodzicki Early History of Algebra: a Sketch Mariusz Wodzicki Algebra has its roots in the theory of quadratic equations which obtained its original and quite full development in ancient Akkad (Mesopotamia) at least 3800 years ago. In Antiq- uity, this earliest Algebra greatly influenced Greeks1 and, later, Hindus. Its name, however, is of Arabic origin. It attests to the popularity in Europe of High Middle Ages of Liber al- gebre et almuchabole — the Latin translation of the short treatise on the subject of solving quadratic equations: Q Ì Al-kitabu¯ ’l-muhtas.aru f¯ı é ÊK.A®ÜÏ@ð .m. '@H . Ak ú¯ QåJjÜÏ@ H. AJº Ë@ – h. isabi¯ ’l-gabriˇ wa-’l-muqabalati¯ (A summary of the calculus of gebr and muqabala). The original was composed circa AD 830 in Arabic at the House of Wisdom—a kind of academy in Baghdad where in IX-th century a number of books were compiled or translated into Arabic chiefly from Greek and Syriac sources—by some Al-Khwarizmi2 whose name simply means that he was a native of the ancient city of Khorezm (modern Uzbekistan). Three Latin translations of his work are known: by Robert of Chester (executed in Segovia in 1140), by Gherardo da Cremona3 (Toledo, ca. 1170) and by Guglielmo de Lunis (ca. 1250). Al-Khwarizmi’s name lives today in the word algorithm as a monument to the popularity of his other work, on Indian Arithmetic, which circulated in Europe in several Latin versions dating from before 1143, and spawned a number of so called algorismus treatises in XIII-th and XIV-th Centuries.
    [Show full text]
  • Notes for a History of the Teaching of Algebra 1
    Notes for a History of the Teaching of Algebra 1 João Pedro da Ponte Instituto de Educação da Universidade de Lisboa Henrique Manuel Guimarães Instituto de Educação da Universidade de Lisboa Introduction Abundant literature is available on the history of algebra. However, the history of the teaching of algebra is largely unwritten, and as such, this chapter essentially con- stitutes some notes that are intended to be useful for future research on this subject. As well as the scarcity of the works published on the topic, there is the added difficulty of drawing the line between the teaching of algebra and the teaching of arithmetic—two branches of knowledge whose borders have varied over time (today one can consider the arithmetic with the four operations and their algorithms and properties taught in schools as nothing more than a small chapter of algebra). As such, we will be very brief in talking about the more distant epochs, from which we have some mathematics docu- ments but little information on how they were used in teaching. We aim to be more ex- plicit as we travel forwards into the different epochs until modern times. We finish, nat- urally, with some reflections on the present-day and future situation regarding the teach- ing of algebra. From Antiquity to the Renaissance: The oral tradition in algebra teaching In the period from Antiquity to the Renaissance, algebra was transmitted essen- tially through oral methods. The written records, such as clay tablets and papyri, were used to support oral teaching but duplication was expensive and time-consuming.
    [Show full text]
  • Islamic Mathematics
    Islamic Mathematics Elizabeth Rogers MATH 390: Islamic Mathematics Supervised by Professor George Francis University of Illinois at Urbana-Champaign August 2008 1 0.1 Abstract This project will provide a summary of the transmission of Greek mathe- matics through the Islamic world, the resulting development of algebra by Muhammad ibn Musa al-Khwarizmi, and the applications of Islamic algebra in modern mathematics through the formulation of the Fundamental Theo- rem of Algebra. In addition to this, I will attempt to address several cultural issues surrounding the development of algebra by Persian mathematicians and the transmission of Greek mathematics through Islamic mathematicians. These cultural issues include the following questions: Why was the geometry of Euclid transmitted verbatim while algebra was created and innovated by Muslim mathematicians? Why didn't the Persian mathematicians expand or invent new theorems or proofs, though they preserved the definition-theorem-proof model for ge- ometry? In addition, why did the definition-theorem-proof model not carry over from Greek mathematics (such as geometry) to algebra? Why were most of the leading mathematicians, in this time period, Mus- lim? In addition, why were there no Jewish mathematicians until recently? Why were there no Orthodox or Arab Christian mathematicians? 0.2 Arabic Names and Transliteration Arabic names are probably unfamiliar to many readers, so a note on how to read Arabic names may be helpful. A child of a Muslim family usually receives a first name ('ism), followed by the phrase \son of ··· "(ibn ··· ). For example, Th¯abitibn Qurra is Th¯abit,son of Qurra. Genealogies can be combined; for example, Ibr¯ah¯ımibn Sin¯anibn Th¯abitibn Qurra means that Ibr¯ah¯ımis the son of Sin¯an,grandson of Th¯abit,and great-grandson of Qurra.
    [Show full text]
  • Roman Duda (Wrocław, Poland) EMIGRATION OF
    ORGANON 44:2012 Roman Duda (Wrocław, Poland) EMIGRATION OF MATHEMATICIANS FROM POLAND IN THE 20 th CENTURY (ROUGHLY 1919–1989) ∗ 1. Periodization For 123 years (1795–1918) Poland did not exist as an independent state, its territory being partitioned between Prussia (Germany), Austria and Russia 1. It was a period of enforced assimilation within new borders and thus of restraining native language and culture which first provoked several national uprisings against oppressors, and then – in the three decades at the turn of the 19 th to 20 th centuries – of a slow rebuilding of the nation’s intellectual life. Conditions, however, were in general so unfavourable that many talents remained undeveloped while some talented people left the country to settle and work elsewhere. Some of the mathematicians emigrating then (in the chronological order of birth): • Józef Maria Hoene–Wro ński (1776–1853) in France, • Henryk Niew ęgłowski (1807–1881) in Paris, • Edward Habich (1835–1909) in Peru, • Franciszek Mertens (1840–1929) in Austria, • Julian Sochocki (1842–1927) in Petersburg, • Jan Ptaszycki (1854–1912) in Petersburg, • Bolesław Młodziejewski (1858–1923) in Moscow, • Cezary Russyan (1867–1934) in Kharkov, • Władysław Bortkiewicz (1868–1931) in Berlin, • Alexander Axer (1880–1948) in Switzerland. Thus the period of partitions was a time of a steady outflow of many good names (not only mathematicians), barely balanced by an inflow due to assim- ilation processes. The net result was decisively negative. After Poland regained independence in 1918, five newly established or re–established Polish universities (Kraków, Lwów, Warsaw, Vilnius, Pozna ń) ∗ The article has been prepared on the suggestion of Prof.
    [Show full text]
  • Fighting for Tenure the Jenny Harrison Case Opens Pandora's
    Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe­ January 1993 issue of the Notices on page 46. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 890 t March 18-19, 1994 Lexington, Kentucky Expired March 891 t March 25-26, 1994 Manhattan, Kansas Expired March 892 t April8-10, 1994 Brooklyn, New York Expired April 893 t June 16-18, 1994 Eugene, Oregon April4 May-June 894 • August 15-17, 1994 (96th Summer Meeting) Minneapolis, Minnesota May 17 July-August 895 • October 28-29, 1994 Stillwater, Oklahoma August 3 October 896 • November 11-13, 1994 Richmond, Virginia August 3 October 897 • January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 1 December March 4-5, 1995
    [Show full text]
  • Algebra and Geometry Throughout History: a Symbiotic Relationship
    Early History of Algebra and Geometry Modern History The Final Stage: Abstract Algebra Algebo-Geometric Set Up Back to Algebra Algebra and Geometry Throughout History: A Symbiotic Relationship Marie A. Vitulli University of Oregon Eugene, OR 97403 January 25, 2019 M. A. Vitulli A Symbiotic Relationship Early History of Algebra and Geometry Modern History Babylonian and Egyptian Algebra and Geometry The Final Stage: Abstract Algebra Greek and Persian Contributions Algebo-Geometric Set Up Algebraic Notation Matures Back to Algebra Stages in the Development of Symbolic Algebra Rhetorical algebra: equations are written in full sentences like “the thing plus one equals two”; developed by ancient Babylonians Syncopated algebra: some symbolism was used, but not all characteristics of modern algebra; for example, Diophantus’ Arithmetica (3rd century A.D.) Symbolic algebra - full symbolism is used; developed by François Viète (16th century) M. A. Vitulli A Symbiotic Relationship Early History of Algebra and Geometry Modern History Babylonian and Egyptian Algebra and Geometry The Final Stage: Abstract Algebra Greek and Persian Contributions Algebo-Geometric Set Up Algebraic Notation Matures Back to Algebra Babylonian Algebra: Plimpton 322 ca. 1800 B.C.E. Babylonians used cuneiform cut into a clay tablet with a blunt reed to record numbers and figures. They had a base 60 true place-value number system. Plimpton 322 contains a table with 2 of 3 numbers of what are now called Pythagorean triples: integers a; b; and c satisfying a2 + b2 = c2. These are integer length sides of a right Figure: Plimpton 322 triangle. M. A. Vitulli A Symbiotic Relationship Early History of Algebra and Geometry Modern History Babylonian and Egyptian Algebra and Geometry The Final Stage: Abstract Algebra Greek and Persian Contributions Algebo-Geometric Set Up Algebraic Notation Matures Back to Algebra Babylonian Algebra: YBC 7289 ca.
    [Show full text]