Solidgo Rigida Var Rigida (Stiff Flat-Topped Goldenrod)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experimental Evidence That Evolutionarily Diverse Assemblages Result in Higher Productivity
Experimental evidence that evolutionarily diverse assemblages result in higher productivity Marc W. Cadotte1 Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4; and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2 Edited by Harold A. Mooney, Stanford University, Stanford, CA, and approved April 22, 2013 (received for review January 28, 2013) There now is ample experimental evidence that speciose assemblages in polyculture against the expected performance from its mono- are more productive and provide a greater amount of ecosystem cultures (22, 23). Polycultures also might appear more productive services than depauperate ones. However, these experiments often compared with monocultures via a selection effect—if highly conclude that there is a higher probability of including complemen- productive species dominate the polyculture, displacing low- tary species combinations in assemblages with more species and lack productivity species (22). Thus, if distantly related species show a priori prediction about which species combinations maximize reduced resource overlap, then we should observe greater com- function. Here, I report the results of an experiment manipulating plementarity when they are combined. the evolutionary relatedness of constituent plant species across Here, I report the results of a biodiversity–ecosystem func- a richness gradient. I show that assemblages with distantly re- tion experiment that explicitly manipulated the phylogenetic -
Zamia Pumila L. Coontie
VWYZ genera Layout 1/31/08 1:11 PM Page 1178 Z Zamiaceae—Sago-palm family Zamia pumila L. coontie W. Gary Johnson Mr. Johnson retired from the USDA Forest Service’s National Seed Laboratory Synonyms. Zamia angustifolia Jacq., Z. debilis Ait., cm long, and often clustered 2 to 5 per plant. The female Z. floridana A. DC., Z. integrifolia Ait., Z. latifoliolata cones are elongate-ovoid, up to 5 to 19 cm long (LHBH Preneloup, Z. media Jacq., Z. portoricensis Urban, Z. silvi- 1976; FNAEC 1993). The period of receptivity and matura- cola Small, and Z. umbrosa Small. tion of seed is December to March (FNAEC 1993). Insects Other common names. Florida arrowroot, sago (usually beetles or weevils) pollinate coontie. Good seed set [palm] cycad, comptie, Seminole-bread. is helped by hand-pollination (Dehgan 1995). Growth habit, occurrence, and use. Coontie is a Collection of cones, extraction, and storage. Two cycad (a low, palm-like plant) with the trunk underground or seeds are produced per cone scale. The seeds are drupe-like, extending a short distance above ground. It is native to bright orange, 1.5 to 2 cm long (FNAEC 1993). The seeds Georgia, Florida, and the West Indies and is found in may be collected from dehiscing cones in the winter pine–oak woodlands and scrub, and on hammocks and shell (January in Gainesville, Florida). The pulpy flesh should be mounds. About 30 Zamia species are native to the American partially dried by spreading out the seeds to air-dry for tropics and subtropics. Zamia classification in Florida has about a month. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Community Abstract Oak Openings
Oak Openings CommunityOak Openings,Abstract Page 1 Historical Range Prevalent or likely prevalent Infrequent or likely infrequent Photo by Michael A. Kost Absent or likely absent Overview: Oak openings is a fire-dependent, savanna climatic tension zone. In the 1800s, oak openings were type dominated by oaks, having between 10 and located in the south-central Lower Peninsula of Michigan 60% canopy, with or without a shrub layer. The on sandy glacial outwash and coarse-textured moraines predominantly graminoid ground layer is composed (Wing 1937, Comer et al. 1995, NatureServe 2004). Oak of species associated with both prairie and forest openings occurred within the range of bur oak plains communities. Oak openings are found on dry-mesic and oak barrens, with oak openings dominating more on loams and occur typically on level to rolling topography dry-mesic to mesic soils, bur oak plains occupying more of outwash and coarse-textured end moraines. Oak mesic, flat sites in the southwestern part of the Lower openings have been nearly extirpated from Michigan; Peninsula, and oak barrens thriving on droughty sites. only two small examples have been documented. These similar oak savanna types often graded into each other. Oak openings were historically documented in Global and State Rank: G1/S1 the following counties: Allegan, Barry, Berrien, Branch, Calhoun, Cass, Clinton, Eaton, Genesee, Hillsdale, Range: Oak savanna1 and prairie communities reached Ingham, Ionia, Jackson, Kalamazoo, Kent, Lapeer, their maximum coverage in Michigan approximately Lenawee, Livingston, Macomb, Montcalm, Monroe, 4,000-6,000 years ago, when post-glacial climatic Newaygo, Oakland, Ottawa, Shiawassee, St. Joseph, Van conditions were comparatively warm and dry. -
Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D. -
Diversity of Wisconsin Asterids
Diversity of Wisconsin Asterids . bellflowers and asters . **Campanulaceae - bellflower family A family mostly of herbs, but some secondarily woody, widely distributed in the temperate regions and in the montane tropics. Contains 65 genera and over 2200 species, with half belonging to Campanula and Lobelia. • Family has alternate leaves and milky latex. • Flowers are 5 merous and inferior ovaried. **Campanulaceae - bellflower family The family is divided into two distinct subfamilies - Campanuloideae and Lobelioideae - distinguished by floral symmetry, staminal fusion, and carpel number. They were often considered as separate families. Campanulastrum - bellflower Lobelia - lobelia Subfamily Campanuloideae Subfamily Lobelioideae **Campanulaceae - bellflower family Subfamily Campanuloideae __ CA (5) CO (5) A 5 G (3-5) Campanula and relatives have actinomorphic flowers, stamens not fused, and 3-5 fused carpels. Note the 3 styles of Campanula to the left. **Campanulaceae - bellflower family Triodanis perfoliata - Venus looking glass Secondary pollen presentation **Campanulaceae - bellflower family Campanulastrum americana - tall bellflower **Campanulaceae - bellflower family Campanula rotundifolia Campanula rapunculoides Bluebell - circumboreal European bellflower **Campanulaceae - bellflower family Subfamily Lobelioideae Lobelia and relatives have __ zygomorphic flowers, stamens fused CA (5) CO (5) A (5) G (2) into a tube in which the pollen is shed, and 2 fused carpels. Style pushes pollen out through the tube. Style Staminal tube **Campanulaceae -
Winter 2014-2015 (22:3) (PDF)
Contents NATIVE NOTES Page Fern workshop 1-2 Wavey-leaf basket Grass 3 Names Cacalia 4 Trip Report Sandstone Falls 5 Kate’s Mountain Clover* Trip Report Brush Creek Falls 6 Thank yous memorial 7 WEST VIRGINIA NATIVE PLANT SOCIETY NEWSLETTER News of WVNPS 8 VOLUME 22:3 WINTER 2014-15 Events, Dues Form 9 Judy Dumke-Editor: [email protected] Phone 740-894-6859 Magnoliales 10 e e e visit us at www.wvnps.org e e e . Fern Workshop University of Charleston Charleston WV January 17 2015, bad weather date January 24 2015 If you have thought about ferns, looked at them, puzzled over them or just want to know more about them join the WVNPS in Charleston for a workshop led by Mark Watson of the University of Charleston. The session will start at 10 A.M. with a scheduled end point by 12:30 P.M. A board meeting will follow. The sessions will be held in the Clay Tower Building (CTB) room 513, which is the botany lab. If you have any pressed specimens to share, or to ask about, be sure to bring them with as much information as you have on the location and habitat. Even photographs of ferns might be of interest for the session. If you have a hand lens that you favor bring it along as well. DIRECTIONS From the North: Travel I-77 South or 1-79 South into Charleston. Follow the signs to I-64 West. Take Oakwood Road Exit 58A and follow the signs to Route 61 South (MacCorkle Ave.). -
Aristolochia Serpentaria L
New England Plant Conservation Program Aristolochia serpentaria L. Virginia Snakeroot Conservation and Research Plan for New England Prepared by: Dorothy J. Allard, Ph.D. Analytical Resources, LLC P.O. Box 279 East Montpelier, VT 05651 For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Aristolochia serpentaria L., commonly known as Virginia Snakeroot, is a perennial herb in the Aristolochiaceae. Several varieties have been described in the past, but they are no longer recognized in most taxonomic manuals. Aristolochia serpentaria occurs in 26 eastern states and is common in the southern and central part of its range, while becoming rare along its northern periphery. It is listed as a Division 2 species in Flora Conservanda (Brumback and Mehrhoff et al. 1996). Connecticut is the only New England state in which it is found, where it occurs at 12 known sites in ten towns. It grows in a variety of upland forest communities, but is more likely to be found in dry, somewhat rich, rocky, deciduous or mixed deciduous-coniferous woods in Connecticut. Farther south, it also has broad environmental requirements, occupying many upland soil and forest types. Population trends for the species in Connecticut are unclear. One new population was discovered in 2001. Monitoring in 2001 of eight extant sites found that two populations had decreased, three had increased, and one had stayed the same. Several known populations are threatened by habitat modification, invasive species, or site fragility. Two extant populations have not been surveyed for several years. -
And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-CCo-Chairvhiadi rA. -
Species List For: Valley View Glades NA 418 Species
Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var. -
Medicinal Herbs Quick Reference Guide Revision 2*
Medicinal Herbs Quick Reference Guide * Revision 2 Julieta Criollo DNM, CHT Doctor of Natural Medicine Clinical Herbal Therapist Wellness Trading Post [email protected] www.wellnesstradingpost.com 604-760-6425 Copyright © 2004–2011 Julieta Criollo All rights reserved. Note to the reader This booklet is intended for educational purposes only. The information contained in it has been compiled from published books and material on plant medicine. Although the information has been reviewed for correctness, the publisher/author does not assume any legal responsibility and/or liability for any errors or omissions. Furthermore, herbal/plant medicine standards (plant identification, medicinal properties, preparations, dosage, safety precautions and contraindications, pharmacology, and therapeutic usage) are continuously evolving and changing as new research and clinical studies are being published and expanding our knowledge. Hence, readers are encouraged and advised to check the most current information available on plant medicine standards and safety. T his information is not intended to be a substitute for professional medical advice. Always seek the advice of a medical doctor or qualified health practitioner prior to starting any new treatment, or with any questions you may have regarding a medical condition. The publisher/author does not assume any legal responsibility and/or liability for the use of the information contained in this booklet. * Revision 1 updates: addition of color bars to the Herb Groups and the various Herb -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae Permalink https://escholarship.org/uc/item/1904r6x3 Author Siebert Wooldridge, Toni Jean Publication Date 2016 Supplemental Material https://escholarship.org/uc/item/1904r6x3#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Plant Biology by Toni J Siebert Wooldridge December 2016 Thesis committee: Dr. Norman C. Ellstrand, Chairperson Dr. Timothy J. Close Dr. Robert R. Krueger The Thesis of Toni J Siebert Wooldridge is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I am indebted to many people who have been an integral part of my research and supportive throughout my graduate studies: A huge thank you to Dr. Norman Ellstrand as my major professor and graduate advisor, and to my supervisor, Dr. Tracy Kahn, who helped influence my decision to go back to graduate school while allowing me to continue my full-time employment with the UC Riverside Citrus Variety Collection. Norm and Tracy, my UCR parents, provided such amazing enthusiasm, guidance and friendship while I was working, going to school and caring for my growing family. Their support was critical and I could not have done this without them. My committee members, Dr. Timothy Close and Dr. Robert Krueger for their valuable advice, feedback and suggestions.