Cattle Ranching and Deforestation

Total Page:16

File Type:pdf, Size:1020Kb

Cattle Ranching and Deforestation LIVESTOCK POLICY BRIEF 03 Photo: Rogerio M. Mauricio/LEAD Cattle ranching and deforestation During the 1990s, the portion of the globe covered by forests shrank by an estimated 94 000 square kilometres a year, an area roughly the size of Portugal. Most of the land that was cleared and burned was converted to growing crops and grazing Over the past quarter century, livestock (graph 1). In Latin America, in particular, forests have been cleared most of the deforested land ended up as pasture from an area the size of India. used to raise cattle in extensive grazing systems. Particularly in Central and South Typically, the deforestation process starts when America, expansion of pastures for roads are cut through the forest, opening it up livestock production has been one of for logging and mining. Once the forest along the road has been cleared, commercial or subsistence the driving forces behind this wholesale farmers move in and start growing crops. But destruction. forest soils are too nutrient-poor and fragile to Deforestation causes incalculable sustain crops for long. After two or three years, environmental damage, releasing the soil is depleted. Crop yields fall. The farmers let the grass grow and move on. And the ranchers billions of tonnes of carbon dioxide into move in. the atmosphere and driving thousands of species of life to extinction each year. Little investment is needed to start raising cattle on cheap or abandoned land where grass is already Effective policies are urgently needed growing. And the returns can be high, at least for a to discourage expansion of livestock while. After just five to 10 years, overgrazing and production in forest areas and promote nutrient loss turn the rainforest land that was once sustainable grazing systems that will a storehouse of biological diversity into an eroded halt the cycle of degradation and wasteland. abandonment on cleared forest lands. Livestock Information, Sector Analysis and Policy Branch Animal Production and Health Division Short-term profits, long-term costs washed away into streams and rivers. The link between deforestation and cattle ranching is The entire sequence of destruction and degradation, from strongest in Latin America. In Central America, forest area lush forest to barren wasteland, often takes less than a decade. The environmental damage it wreaks is largely has been reduced by almost 40 percent over the past 40 irreversible and will be felt worldwide for generations. years. Over the same period, pasture areas and the cattle Converting cleared forest lands to pasture frequently population increased rapidly (graph 2). compounds the damage. The environmental impact of The Livestock Environment and Development Initiative deforestation and pasture conversion includes: (LEAD - www.lead.virtualcentre.org) recently used a Carbon dioxide emissions – Clearing and burning of sophisticated system for modelling land use change forests releases billions of tonnes of carbon dioxide and to predict the scale and location of deforestation and other greenhouse gases into the atmosphere each year. pasture expansion for the year 2010. The results confirm Experts estimate that deforestation causes roughly one- that extensive grazing of cattle will continue to expand, quarter of all human-induced carbon emissions. Since mostly at the expense of forest cover. If the projections trees absorb carbon from the atmosphere and convert it are accurate, by the year 2010 cattle will be grazing on to woody tissue, deforestation also contributes to the more than 24 million hectares of land that had been forest buildup of greenhouse gases by destroying valuable “carbon a decade earlier. Nearly two-thirds of the deforested land sinks”. Pastures populated only by native grasses and cows will be converted to pasture. The study produced a map absorb significantly less carbon than most other agricultural highlighting “hotspots” of forest clearing and pasture systems, including pastures planted with highly vigorous expansion that can be used to focus the agenda for policies grasses or with shrubs and trees to provide fodder. and research (see map, facing page). Loss of biodiversity – Tropical forests host more than 13 A substantial and increasing share of deforested cropland million distinct species, representing more than two-thirds is also dedicated to expanding livestock production through of all the world’s plants and animals. Experts estimate that intensive, large-scale production of soybeans and other in the course of a decade between two and five percent feed crops. Between 1994 and 2004, land area devoted to of all rain forest species will become extinct, largely as a growing soybeans in Latin America more than doubled to result of habitat loss caused by deforestation. Monoculture 39 million ha, making it the largest area for a single crop, pastures are inhospitable to many species of birds and far above maize, which ranks second at 28 million ha. This invertebrates that require diverse habitats. trend has been driven mainly by the sharp increase in Soil degradation – Fragile forest soils can support an demand for livestock products, which led to a tripling of abundance of life only because fallen leaves and branches global meat production between 1980 and 2002. Most of provide nutrients, because the forest canopy protects them this increased production came from large-scale, intensive against the scorching sun and torrential rains, and because livestock operations in China and other East Asian countries, extensive root structures prevent erosion. When the trees where land scarcity has led producers to rely increasingly on are gone, the soil quickly becomes depleted. Native grasses imported feed. This demand for feed, combined with other provide few nutrients and little protection for the soil and factors, has triggered increased production and exports overgrazing accelerates nutrient loss and erosion. of feed from countries like Brazil where land is relatively Water pollution – Forests often serve as nature’s water abundant, partly as a result of deforestation. Some of the purification plants, as rain water percolates through soil policies highlighted here may help to address the role of held in place by the complex root structures of several increased feed production in deforestation, but a full layers of trees. Without the protective forest canopy and discussion of the problem and of policy options for dealing roots, the soil loses its capacity to retain water and is often with it fall outside the scope of this brief. 1 – Percentage of forest area change 2 – Forest area, pasture area and cattle by change process, 1990-2000 population in Central America, 1961-2000 percentage of total area change Index values (1961 = 100) 70 200 60 Cattle population 50 Pasture area Forest area 40 30 150 20 10 0 Africa Latin Anerica Asia 100 Expansion of shifting cultivation into undisturbed forests Intensification of agriculture in shifting cultivation areas Conversion of forest area to small-scale permanent agriculture Conversion of forest area to Large-scale permanent agriculture Gains in forest area and canopy cover 50 Other 1961 1970 1980 1990 2000 Source: FAO Source: FAO 2 LIVESTOCK POLICY BRIEF Projected deforestation hotspots and diffuse deforestation areas, 2000-2010 Legend Deforestation hotspots crop land expansion pasture expansion Diffuse deforestation crop land expansion pasture expansion crop and pasture expansion Generalized land use forest grazed pasture cropland urban, bare or water shrub land 0 500 1 000 km fixed vegetation 3 – Share of deforested land converted to pasture 4 – Share of deforested land in hotspots (deforestation and cropland, 2000-2010 in closed forest) and diffuse deforestation areas (deforestation in fragmented forest), 2000-2010 Percentage of total deforested land projected to be converted to pasture cropland Percentage of total pasture/cropland expansion into forest expected to take place in deforestation hotspots and diffuse 100 deforestation areas. hotspots 80 diffuse deforestation areas 60 40 39% 59% 20 0 Peru Bolivia Brazil EcuadorGuyana Panama Pasture Cropland Colombia Paraguay Honduras VenezuelaCosta RicaGuatemala Nicaragua Source: LEAD LIVESTOCK POLICY BRIEF 3 Setting the policy agenda environmental and public health problems often associated with poor manure management in industrial systems (see Destruction of forest lands through conversion to pasture Livestock Policy Brief 02). takes place in distinct areas and stages. Smallholders can be encouraged to raise livestock along The large-scale burning clearly visible in satellite images with a variety of annual and permanent crops in mixed and occasional television reports occurs mainly along the farming and agroforestry systems that protect the soil with “agricultural frontier”, where farmers and ranchers invade year-round cover and replenish it with recycled nutrients. previously intact forests. But a great deal of deforestation Silvopastoral approaches in which pastures are planted with also occurs in areas where forests have already been improved grasses, fodder shrubs and trees can prevent soil fragmented by fields, pastures and settlements. The LEAD degradation, improve watershed management and provide projection of pasture expansion in South and Central a varied habitat for a wide range of biodiversity. America concludes that less than half the area deforested In the long run, these approaches can help prevent between 2000 and 2010 will be located within hotspots deforestation and soil degradation and
Recommended publications
  • What Is the Most Effective Way to Reduce Population Growth And
    Ariana Shapiro TST BOCES New Visions - Ithaca High School Ithaca, NY Kenya, Factor 17 Slowing Population Growth and Urbanization Through Education, Sustainable Agriculture, and Public Policy Initiatives in Kenya Kenya is a richly varied and unique country. From mountains and plains to lowlands and beaches, the diversity within the 224,961 square miles is remarkable. Nestled on the eastern coast of Africa, Kenya is bordered by Tanzania, Uganda, Ethiopia, Somalia, and the Indian Ocean. Abundant wildlife and incredible biodiversity make Kenya a favorable tourist attraction, and tourism is the country’s best hard currency earner (BBC). However, tourism only provides jobs for a small segment of the population. 75 percent of Kenyans make their living through agriculture (mostly without using irrigation), on the 8.01 percent of land that is classified as arable (CIA World Factbook). As a result, agricultural activity is very concentrated in the fertile coastal regions and some areas of the highlands. Subsistence farmers grow beans, cassava, potatoes, maize, sorghum, and fruit, and some grow export crops such as tea, coffee, horticulture and pyrethrum (HDR). Overgrazing on the arid plateaus and loss of soil and tree cover in croplands has primed Kenya for recurring droughts followed by floods in the rainy seasons. The increasing environmental degradation has had a profound effect on the people of Kenya by forcing farmers onto smaller plots of land too close to other subsistence farms. Furthermore, inequitable patterns of land ownership and a burgeoning population have influenced many poor farmers to move into urban areas. The rapidity of urbanization has resulted in poorly planned cities that are home to large and unsafe slums.
    [Show full text]
  • Desertification and Deforestation in Africa - R
    LAND USE, LAND COVER AND SOIL SCIENCES – Vol. V – Desertification and Deforestation in Africa - R. Penny DESERTIFICATION AND DEFORESTATION IN AFRICA R. Penny Environmental and Developmental Consultant/Practitioner, Cape Town, South Africa Keywords: arid, semi-arid, dry sub-humid, drought, drylands, land degradation, land tenure, sustainability Contents 1. Introduction 2. Global Context 3. Land Degradation in Africa Today 3.1. Geographical Regions 3.2. Socio-Economic Aspects 4. Causes and Consequences 4.1. Drought and Other Disasters 4.2. Water Quality and Availability 4.3. Loss of Vegetative Cover 4.4. Loss of Soil Fertility 4.5. Poverty and Population 4.6. Effect of Land Tenure 4.7. Health 5. Combating Desertification 5.1. Past Trends 5.2. Current Attempts to Combat Desertification 5.3. Synergy of the Three Sustainable Development Conventions 5.4. The Role of Science and Technology in Combating Desertification 5.5. Synergy in Environmental Policy Development 6. Future Perspectives: The Way Forward 7. Conclusions Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Africa is particularly vulnerable to desertification. Two thirds of the continent consists of desert or drylands.SAMPLE The obvious causes of desertificatiCHAPTERSon and deforestation consist of major ecosystem changes, such as land conversion for various purposes, over- dependence on natural resources and several forms of unsustainable land use. However, the issue of desertification is inseparable from social problems such as poverty and land tenure issues. Politics, war and national disasters affect the movements of people and thus impact on the land. International trade policies as well play a part in land management and/or exploitation.
    [Show full text]
  • Connecting Genetic Diversity and Threat Mapping to Set Conservation Priorities for Juglans Regia L
    fevo-08-00171 June 19, 2020 Time: 17:54 # 1 ORIGINAL RESEARCH published: 23 June 2020 doi: 10.3389/fevo.2020.00171 Diversity Under Threat: Connecting Genetic Diversity and Threat Mapping to Set Conservation Priorities for Juglans regia L. Populations in Central Asia Hannes Gaisberger1,2*, Sylvain Legay3, Christelle Andre3,4, Judy Loo1, Rashid Azimov5, Sagynbek Aaliev6, Farhod Bobokalonov7, Nurullo Mukhsimov8, Chris Kettle1,9 and Barbara Vinceti1 1 Bioversity International, Rome, Italy, 2 Department of Geoinformatics, University of Salzburg, Salzburg, Austria, 3 Luxembourg Institute of Science and Technology, Belvaux, Luxembourg, 4 New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand, 5 Bioversity International, Tashkent, Uzbekistan, 6 Kyrgyz National Agrarian University named after K. I. Skryabin, Bishkek, Kyrgyzstan, 7 Institute of Horticulture and Vegetable Growing of Tajik Academy Edited by: of Agricultural Sciences, Dushanbe, Tajikistan, 8 Republican Scientific and Production Center of Ornamental Gardening David Jack Coates, and Forestry, Tashkent, Uzbekistan, 9 Department of Environmental System Science, ETH Zürich, Zurich, Switzerland Department of Biodiversity, Conservation and Attractions (DBCA), Australia Central Asia is an important center of diversity for common walnut (Juglans regia L.). Reviewed by: We characterized the genetic diversity of 21 wild and cultivated populations across Bilal Habib, Kyrgyzstan, Tajikistan, and Uzbekistan. A complete threat assessment was performed Wildlife Institute of India,
    [Show full text]
  • Land Degradation and the Australian Agricultural Industry
    LAND DEGRADATION AND THE AUSTRALIAN AGRICULTURAL INDUSTRY Paul Gretton Umme Salma STAFF INFORMATION PAPER 1996 INDUSTRY COMMISSION © Commonwealth of Australia 1996 ISBN This work is copyright. Apart from any use as permitted under the Copyright Act 1968, the work may be reproduced in whole or in part for study or training purposes, subject to the inclusion of an acknowledgment of the source. Reproduction for commercial usage or sale requires prior written permission from the Australian Government Publishing Service. Requests and inquiries concerning reproduction and rights should be addressed to the Manager, Commonwealth Information Services, AGPS, GPO Box 84, Canberra ACT 2601. Enquiries Paul Gretton Industry Commission PO Box 80 BELCONNEN ACT 2616 Phone: (06) 240 3252 Email: [email protected] The views expressed in this paper do not necessarily reflect those of the Industry Commission. Forming the Productivity Commission The Federal Government, as part of its broader microeconomic reform agenda, is merging the Bureau of Industry Economics, the Economic Planning Advisory Commission and the Industry Commission to form the Productivity Commission. The three agencies are now co- located in the Treasury portfolio and amalgamation has begun on an administrative basis. While appropriate arrangements are being finalised, the work program of each of the agencies will continue. The relevant legislation will be introduced soon. This report has been produced by the Industry Commission. CONTENTS Abbreviations v Preface vii Overview
    [Show full text]
  • Road Impact on Deforestation and Jaguar Habitat Loss in The
    ROAD IMPACT ON DEFORESTATION AND JAGUAR HABITAT LOSS IN THE MAYAN FOREST by Dalia Amor Conde Ovando University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Norman L. Christensen, Supervisor ___________________________ Alexander Pfaff ___________________________ Dean L. Urban ___________________________ Randall A. Kramer Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2008 ABSTRACT ROAD IMPACT ON DEFORESTATION AND JAGUAR HABITAT LOSS IN THE MAYAN FOREST by Dalia Amor Conde Ovando University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Norman L. Christensen, Supervisor ___________________________ Alexander Pfaff ___________________________ Dean L. Urban ___________________________ Randall A. Kramer An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2008 Copyright by Dalia Amor Conde Ovando 2008 Abstract The construction of roads, either as an economic tool or as necessity for the implementation of other infrastructure projects is increasing in the tropical forest worldwide. However, roads are one of the main deforestation drivers in the tropics. In this study we analyzed the impact of road investments on both deforestation and jaguar habitat loss, in the Mayan Forest. As well we used these results to forecast the impact of two road investments planned in the region. Our results show that roads are the single deforestation driver in low developed areas, whether many other drivers play and important role in high developed areas. In the short term, the impact of a road in a low developed area is lower than in a road in a high developed area, which could be the result of the lag effect between road construction and forest colonization.
    [Show full text]
  • Hidden Deforestation in the Brazil - China Beef and Leather Trade 1
    Hidden deforestation in the Brazil - China beef and leather trade 1 Hidden deforestation in the Brazil - China beef and leather trade Christina MacFarquhar, Alex Morrice, Andre Vasconcelos August 2019 Key points: China is Brazil’s biggest export market for cattle products, • Cattle ranching is the leading direct driver of deforestation which are a major driver of deforestation and other native and other native vegetation clearance in Brazil, and some vegetation loss in Brazil. This brief identifies 43 companies international beef and leather supply chains are linked to worldwide that are highly exposed to deforestation risk through these impacts. the Brazil-China beef and leather trade, and which have significant potential to help reduce this risk. The brief shows • China (including Hong Kong) is Brazil’s biggest importer of which of these companies have published policies to address beef and leather, and many companies linked to this trade are deforestation risk related to these commodities. It also reveals exposed to deforestation risk. the supplier-buyer relationships between these companies, • We identify 43 companies globally that are particularly exposed and how their connections may mean even those buyers with to the deforestation risk associated with the Brazil-China beef commitments to reduce or end deforestation may not be able to and leather trade and have the potential to reduce these risks. meet them. It then makes recommendations for the next steps companies can take to address deforestation risk. • Most of these companies have not yet published sustainable sourcing policies to address this risk. The companies include cattle processors operating in Brazil, processors and manufacturers operating in China, and • Most appear unable to guarantee that their supply chains are manufacturers and retailers headquartered in Europe and the deforestation-free, because they, or a supplier, lack a strong United States of America (US).
    [Show full text]
  • Desertification and Agriculture
    BRIEFING Desertification and agriculture SUMMARY Desertification is a land degradation process that occurs in drylands. It affects the land's capacity to supply ecosystem services, such as producing food or hosting biodiversity, to mention the most well-known ones. Its drivers are related to both human activity and the climate, and depend on the specific context. More than 1 billion people in some 100 countries face some level of risk related to the effects of desertification. Climate change can further increase the risk of desertification for those regions of the world that may change into drylands for climatic reasons. Desertification is reversible, but that requires proper indicators to send out alerts about the potential risk of desertification while there is still time and scope for remedial action. However, issues related to the availability and comparability of data across various regions of the world pose big challenges when it comes to measuring and monitoring desertification processes. The United Nations Convention to Combat Desertification and the UN sustainable development goals provide a global framework for assessing desertification. The 2018 World Atlas of Desertification introduced the concept of 'convergence of evidence' to identify areas where multiple pressures cause land change processes relevant to land degradation, of which desertification is a striking example. Desertification involves many environmental and socio-economic aspects. It has many causes and triggers many consequences. A major cause is unsustainable agriculture, a major consequence is the threat to food production. To fully comprehend this two-way relationship requires to understand how agriculture affects land quality, what risks land degradation poses for agricultural production and to what extent a change in agricultural practices can reverse the trend.
    [Show full text]
  • Overgrazing and Range Degradation in Africa: the Need and the Scope for Government Control of Livestock Numbers
    Overgrazing and Range Degradation in Africa: The Need and the Scope for Government Control of Livestock Numbers Lovell S. Jarvis Department of Agricultural and Resource Economics University of California, Davis Paper prepared for presentation at International Livestock Centre for Africa (ILCA) October 1984 Subsequently published in East Africa Economic Review, Vol. 7, No. 1 (1991) Overgrazing and Range Degradation in Africa: The Need and the Scope For Government Control of Livestock Numbers Lovell S. Jarvis1 Department of Agricultural and Resource Economics University of California, Davis Introduction Livestock production has been an integral part of farming systems for hundreds of years in many regions of Africa, but there is little evidence on the herd size or range conditions in the pre- colonial period. The great rinderpest epidemic, 1889 to 1896, severely reduced the cattle population and the human population dependent on it. Some estimate that herds fell to 10% or less of their previous level (Sinclair, 1979). This caused the emergence of forest and brush and the invasion of tsetse in some regions, which further harmed the remaining pastoralists. Since that epidemic the livestock and human populations in most of Africa have grown substantially. By the 1920's, some European observers suggested that systematic overgrazing and range degradation might be occurring as a result of common range, and argued that an alternate land tenure system or external stocking controls were essential to avoid a serious reduction in production. These assertions - whether motivated by concern for herder welfare or eagerness to take over pastoralist land -- have been made repeatedly in subsequent years.
    [Show full text]
  • Late Quaternary Extinctions on California's
    Flightless ducks, giant mice and pygmy mammoths: Late Quaternary extinctions on California’s Channel Islands Torben C. Rick, Courtney A. Hofman, Todd J. Braje, Jesu´ s E. Maldonado, T. Scott Sillett, Kevin Danchisko and Jon M. Erlandson Abstract Explanations for the extinction of Late Quaternary megafauna are heavily debated, ranging from human overkill to climate change, disease and extraterrestrial impacts. Synthesis and analysis of Late Quaternary animal extinctions on California’s Channel Islands suggest that, despite supporting Native American populations for some 13,000 years, few mammal, bird or other species are known to have gone extinct during the prehistoric human era, and most of these coexisted with humans for several millennia. Our analysis provides insight into the nature and variability of Quaternary extinctions on islands and a broader context for understanding ancient extinctions in North America. Keywords Megafauna; island ecology; human-environmental interactions; overkill; climate change. Downloaded by [Torben C. Rick] at 03:56 22 February 2012 Introduction In earth’s history there have been five mass extinctions – the Ordovician, Devonian, Permian, Triassic and Cretaceous events – characterized by a loss of over 75 per cent of species in a short geological time period (e.g. 2 million years or less: Barnosky et al. 2011). Although not a mass extinction, one of the most heavily debated extinction events is the Late Quaternary extinction of megafauna, when some two-thirds of large terrestrial mammalian genera (444kg) worldwide went extinct (Barnosky et al. 2004). Explanations for this event include climate change, as the planet went from a glacial to interglacial World Archaeology Vol.
    [Show full text]
  • An Approach for Describing the Effects of Grazing on Soil Quality in Life
    sustainability Article An Approach for Describing the Effects of Grazing on Soil Quality in Life-Cycle Assessment Andreas Roesch 1,*, Peter Weisskopf 2, Hansruedi Oberholzer 2, Alain Valsangiacomo 1 and Thomas Nemecek 1 1 Agroscope, LCA Research Group, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland 2 Agroscope, Soil Fertility and Soil Protection Group, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41-(0)-58-468-7579 Received: 27 July 2019; Accepted: 30 August 2019; Published: 6 September 2019 Abstract: Describing the impact of farming on soil quality is challenging, because the model should consider changes in the physical, chemical, and biological status of soils. Physical damage to soils through heavy traffic was already analyzed in several life-cycle assessment studies. However, impacts on soil structure from grazing animals were largely ignored, and physically based model approaches to describe these impacts are very rare. In this study, we developed a new modeling approach that is closely related to the stress propagation method generally applied for analyzing compaction caused by off-road vehicles. We tested our new approach for plausibility using a comprehensive multi-year dataset containing detailed information on pasture management of several hundred Swiss dairy farms. Preliminary results showed that the new approach provides plausible outcomes for the two physical soil indicators “macropore volume” and “aggregate stability”. Keywords: soil structure; macropore volume; aggregate stability; compaction; modeling; grazing animal; trampling 1. Introduction Soils are a key component of terrestrial ecosystems and provide multiple ecosystem services to humans, such as provisioning of food, timber, and freshwater. Soil is a natural resource and the basis for agriculture and agricultural food production.
    [Show full text]
  • Human Population Growth and Its Implications on the Use and Trends of Land Resources in Migori County, Kenya
    HUMAN POPULATION GROWTH AND ITS IMPLICATIONS ON THE USE AND TRENDS OF LAND RESOURCES IN MIGORI COUNTY, KENYA PAULINE TOLO OGOLA A Thesis Submitted in Partial Fulfilment of the Requirements for the Award of the Degree of Master of Environmental Studies (Agroforestry and Rural Development) in the School of Environmental Studies of Kenyatta University NOVEMBR, 2018 1 DEDICATION To my loving parents, Mr. and Mrs. Ogola, With long life He will satisfy you i ACKNOWLEDGEMENT First of all, I am grateful to the Man above who gave me strength and health throughout this study. For sure, His goodness and Mercies are new every day. Secondly, I am greatly indebted to my supervisors Dr. Letema and Dr. Obade for their wise counsel and patience. Thirdly, I would like to convey my utmost gratitude to my parents and siblings for their moral support and prayers. Special thanks to my brother Stephen Ogeda for supporting me financially. Finally, I wish to express many thanks to my colleagues at the Regional Centre for Mapping of Resources for Development and friends who have offered their support in kind and deed. ii TABLE OF CONTENTS DECLARATION………………………………………………………………………… Error! Bookmark not defined. DEDICATION…………………………………………………………………………...i ACKNOWLEDGEMENT……………………………………………………………...ii LIST OF TABLES……………………………………………………………………...vi LIST OF FIGURES……………………………………………………………………vii ABBREVIATIONS AND ACRONYMS……………………………………………….viii ABSTRACT………………………………………………………………………………i x CHAPTER ONE: INTRODUCTION…………………………………………………..1 1.1 Background to the Problem .........................................................................................
    [Show full text]
  • What Are the Major Causes of Desertification?
    What Are the Major Causesof Desertification? ‘Climatic variations’ and ‘Human activities’ can be regarded as relationship with development pressure on land by human the two main causes of desertification. activities which are one of the principal causes of Climatic variations: Climate change, drought, moisture loss on a desertification. The table below shows the population in global level drylands by each continent and as a percentage of the global Human activities: These include overgrazing, deforestation and population of the continent. It reveals a high ratio especially in removal of the natural vegetation cover(by taking too much fuel Africa and Asia. wood), agricultural activities in the vulnerable ecosystems of There is a vicious circle by which when many people live in arid and semi-arid areas, which are thus strained beyond their the dryland areas, they put pressure on vulnerable land by their capacity. These activities are triggered by population growth, the agricultural practices and through their daily activities, and as a impact of the market economy, and poverty. result, they cause further land degradation. Population levels of the vulnerable drylands have a close 2 ▼ Main Causes of Soil Degradation by Region in Susceptible Drylands and Other Areas Degraded Land Area in the Dryland: 1,035.2 million ha 0.9% 0.3% 18.4% 41.5% 7.7 % Europe 11.4% 34.8% North 99.4 America million ha 32.1% 79.5 million ha 39.1% Asia 52.1% 5.4 26.1% 370.3 % million ha 11.5% 33.1% 30.1% South 16.9% 14.7% America 79.1 million ha 4.8% 5.5 40.7% Africa
    [Show full text]