Deformation-Related Volcanism in the Pacific Ocean Linked To

Total Page:16

File Type:pdf, Size:1020Kb

Deformation-Related Volcanism in the Pacific Ocean Linked To LETTERS PUBLISHED ONLINE: 27 APRIL 2015 | DOI: 10.1038/NGEO2416 Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian–Emperor bend John M. O’Connor1,2,3*, Kaj Hoernle4, R. Dietmar Müller5, Jason P. Morgan6, Nathaniel P. Butterworth5, Folkmar Hau4, David T. Sandwell7, Wilfried Jokat1,8, Jan R. Wijbrans3 and Peter Stoers9 Ocean islands, seamounts and volcanic ridges are thought to reconstructions connecting the Indo-Atlantic realm to the Pacific form above mantle plumes. Yet,this mechanism cannot explain for Late Cretaceous predict a negligible bend13. many volcanic features on the Pacific Ocean floor1 and some Although diverse lines of evidence record a rough correlation might instead be caused by cracks in the oceanic crust linked to between other circum-Pacific tectonic changes (Supplementary the reorganization of plate motions1–3. A distinctive bend in the Note 2) and formation of the HEB (refs5 ,11,14), their timing has Hawaiian–Emperor volcanic chain has been linked to changes been too protracted to establish a connection. Here we report the in the direction of motion of the Pacific Plate4,5, movement of unexpected discovery of the long-sought-after independent tem- the Hawaiian plume6–8, or a combination of both9. However, poral record of circum-Pacific tectonic events while investigating these links are uncertain because there is no independent a new type of linear structure on the Pacific seafloor detected in record that precisely dates tectonic events that aected the recent years by improvements in satellite altimetry2. This new type of Pacific Plate. Here we analyse the geochemical characteristics structure consists of groups of linear en échelon volcanic ridges, first of lava samples collected from the Musicians Ridges, lines described in 1987 for the `Crossgrain' ridges located in the central of volcanic seamounts formed close to the Hawaiian–Emperor Pacific2. Mechanisms explaining these linear ridge groups include bend. We find that the geochemical signature of these lavas hotspot-spreading ridge interaction15 and tensional cracking of the is unlike typical ocean island basalts and instead resembles Pacific Plate2,3 (see Supplementary Note 3). mid-ocean ridge basalts. We infer that the seamounts are To investigate the origin of these enigmatic structures, we carried unrelated to mantle plume activity and instead formed in an out seismic surveys and dredge sampled the en échelon linear ridges, extensional setting, due to deformation of the Pacific Plate. extending eastward in clusters, from the northern and southern ends 40Ar/39Ar dating reveals that the Musicians Ridges formed of the Musicians Seamount Chain and the Murray Fracture Zone during two time windows that bracket the time of formation (FZ) on RV Sonne cruise SO142 (Fig.1 and Supplementary Fig. 1 of the Hawaiian–Emperor bend, 53–52 and 48–47 million years and Supplementary Table 1). The Musicians Seamounts form a NW ago. We conclude that the Hawaiian–Emperor bend was formed trending age-progressive Cretaceous hotspot track, located several by plate–mantle reorganization, potentially triggered by a hundred kilometres northwest of the Hawaiian Seamounts, best series of subduction events at the Pacific Plate margins. explained by plate motion over a now extinct Musicians hotspot15,16. Both changes in mantle flow6–8 and in the direction of The cluster of ridges extending from the southern end of the Pacific Plate motion4,5 have been proposed to explain the Musicians Seamount Chain is bounded to the north by the Murray Hawaiian–Emperor bend (HEB). Decreasing palaeolatitudes FZ, which consists of a ∼100 km band of linear ridges and troughs during the formation of the Emperor Seamounts6,8, and combined that stretch from the Musicians to the Hawaiian Seamount Chain16. global mantle flow and plate motion models5, support mantle flow as We dredge sampled one of these volcanic ridges in the Murray the dominant mechanism for creating the HEB. A palaeomagnetic FZ (Fig.1 ). pole for the Pacific Plate (based on the skewness of vector Seismic profiles collected during the SO142 expedition show that aeromagnetic profiles of magnetic anomalies due to seafloor the Musicians Ridges were formed by volcanism15. The volcanism is spreading) has been interpreted as evidence that 5◦ ± 3◦ of the interpreted to have been generated by flow of mantle along channels southward motion of the Hawaiian hotspot occurred after 32 Myr in the base of the lithosphere from the Musicians hotspot to the ago (ref. 10), thus post-dating the formation of the Emperor Pacific–Farallon spreading centre in the Cretaceous15. Although Seamounts, but the robustness of this type of analysis has been this is consistent with the ∼94–92 Myr 40Ar/39Ar ages for two questioned (Supplementary Note 1). An alternative hypothesis samples dredged from the volcanic ridge located furthest away from notes the broad coincidence of the HEB with major circum-Pacific the northern end of the Musicians Chain (Fig.1 ), most of the Plate tectonic events and favours HEB formation by the resulting 40Ar/39Ar ages for the southern Musicians Ridges are unexpectedly change in the direction of Pacific Plate motion4,5,11,12. But plate 52–53 Myr. A few younger ages show that volcanism might have 1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany. 2GeoZentrum Nordbayern, University Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany. 3Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. 4GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany. 5EarthByte Group, School of Geosciences, The University of Sydney, New South Wales 2006, Australia. 6Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. 7Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0225, USA. 8University of Bremen, Fachbereich 5, 330440 Bremen, Germany. 9Institute for Geosciences, Christian-Albrechts-University, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany. *e-mail: [email protected] NATURE GEOSCIENCE | VOL 8 | MAY 2015 | www.nature.com/naturegeoscience 393 © 2015 Macmillan Publishers Limited. All rights reserved LETTERS NATURE GEOSCIENCE DOI: 10.1038/NGEO2416 Longitude Bach Ridge ° ° 100 0.30 165 W 160 W 06MY102 SO142 9DR-1 90 plagioclase 80 39Ar fraction = 96% 70 0.20 96 60 K/Ca Musicians Seamounts 5 4 50 94 52.4 ± 0.6 Myr 40 Age (Myr) Age 0.10 91 30 90 20 Latitude 10 30° N 6 0 0.00 84 0102030405060708090100 86 Murray FZ Beethoven Ridge 100 0.10 04MY378 83 SO142 13DR-2 90 plagioclase Hawaiian Chain 39Ar fraction = 91% 8 9 10 12 80 0.08 75 70 75 13 60 0.06 K/Ca 79 82 83 50 52.7 ± 0.6 Myr 25° N 40 0.04 Age (Myr) Age 30 20 0.02 50° N 10 Emperor Chain 0 0.00 0 10 20 30 40 50 60 70 80 90 100 Murray FZ 0.20 140 02M0239 SO142 6DR-1 rock chips 39 120 Ar fraction = 70% 0.16 40° N Latitude 100 HEB K/Ca 80 0.12 Musicians 48.5 ± 0.9 Myr 60 Age (Myr) Age 0.08 40 30° N 20 0.04 Haw 0 aiian Chain 0102030405060708090100 Murray FZ ° 20 N 140 02M0240 SO142 6DR-4 rock chips 0.16 120 39Ar fraction = 71% 170° E 180° 170° W 160° W 100 Longitude 0.12 K/Ca 80 Figure 1 | Locations of sample sites on the Musicians volcanic ridges. 47.0 ± 1.2 Myr 60 Yellow circles in the top panel indicate the locations of SO142 expedition (Myr) Age 0.08 dredge sites and adjacent numbers give the station numbers 40 (see Supplementary Table 1 for sample information). Sample ages are 20 0.04 shown also on high-resolution bathymetric maps in Supplementary Fig. 1. 0 The base map is marine gravity from radar altimetry at a contour interval of 0 10 20 30 40 50 60 70 80 90 100 20 mGal (ref. 31). White numbers are for published ages measured in the Cumulative 39Ar released (%) 1990s and white boxes show sample locations16. The box around the HEB marks the position of an enlarged map with age information in Figure 2 | Examples of high-resolution incremental heating 40Ar/39Ar age Supplementary Fig. 3. spectra for the Musicians volcanic ridges. Pink lines are 40Ar/39Ar ages, and grey lines are K/Ca ratios. The reported 40Ar/39Ar age ages are continued until 47–48 Myr ago, or that a second event occurred weighted age estimates with errors reported on the 95% confidence level, roughly 6 Myr later. Surprisingly, the samples from the Murray FZ including 0.3%–0.4% s.d. in the J-value. All samples where monitored also yielded ages of 47–48 Myr. 40Ar/39Ar plateau ages are shown against Taylor Creek rhyolite (TCR) monitor (28.34±0.014 Myr, 1σ /. For in Fig.2 and Supplementary Fig. 2. For complete information see complete information see Methods, Supplementary Table 2, Methods, Supplementary Table 2 and Supplementary Methods. The Supplementary Fig. 2 and Supplementary Methods. most striking facet of these unexpectedly young lava ages is they bracket the formation of the HEB (50–47 Myr ago; refs5 ,9; see also (or post-erosional) volcanism found on intraplate volcanoes, Supplementary Fig. 3). such as the Hawaiian Island volcanoes, because they are tholeiitic The geochemistry of this late-stage volcanism can help and are depleted in both incompatible element and isotopic constrain its origin (Fig.3 and Supplementary Fig. 4 and composition, whereas rejuvenated volcanism is alkalic and shows Supplementary Table 2). The dated samples are unlike rejuvenated incompatible element enrichment (see also Supplementary Note 4). 394 NATURE GEOSCIENCE | VOL 8 | MAY 2015 | www.nature.com/naturegeoscience © 2015 Macmillan Publishers Limited.
Recommended publications
  • Basaltic Continental Intraplate Volcanism As Sustained by Shear-Driven Upwelling
    Geophysical Research Abstracts Vol. 14, EGU2012-3273-1, 2012 EGU General Assembly 2012 © Author(s) 2012 Basaltic continental intraplate volcanism as sustained by shear-driven upwelling M. D. Ballmer (1), C. P. Conrad (1), and E. I. Smith (2) (1) Department of Geology & Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA, (2) Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Neveda 89154, USA While most volcanism on Earth occurs at plate boundaries, the study of intraplate basaltic volcanism may provide an opportunity to scrutinize the make-up and dynamics of the mantle. In continental settings, a range of mechanisms were proposed to sustain mantle decompression and hence to support such volcanism. These include mantle plumes, fertile melting anomalies, self-sustaining buoyant decompression melting, lithospheric dripping, and edge-driven small-scale convection. Recently, Conrad et al. showed that basaltic continental volcanism occurs more often where shear across the asthenosphere is greatest, and hence propose shear-driven upwelling (SDU) to support such volcanism1. SDU does not require density heterogeneity to drive convection, in contrast to other mechanisms. Rather, it develops when rapid shear across the asthenosphere meets lateral viscosity variation2. For example, in a case with a low-viscosity pocket in the mantle, asthenospheric shear is accommodated in a different manner across the pocket than across the ambient mantle. This contrast drives vertical flow close to the margins of the pocket, and may be sufficient to sustain decompression melting, particularly if the viscosity anomaly is supported by higher water contents or temperatures2.
    [Show full text]
  • The Origin of Intraplate Volcanism on Zealandia C
    Geophysical Research Abstracts, Vol. 10, EGU2008-A-11195, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-11195 EGU General Assembly 2008 © Author(s) 2008 The Origin of Intraplate Volcanism on Zealandia C. Timm (1), K. Hoernle (1), R. Werner (2), F. Hauff (1), P. van den Boogard (1), J. White (3), N. Mortimer (4) (1) IFM-GEOMAR, Wischhofstr. 1-3, 24148 Kiel (2) Tethys Geoconsulting GmbH, Wischhofstr. 1-3, 24148 Kiel (3) Geology Department, University of Otago, PO Box 56, Dunedin 9015, NZ (4) Institute of Geological and Nuclear Sciences, PO Box 31-312, Lower Hut, NZ The origin of intraplate volcanism on continents is generally attributed to mantle plumes or continental rifting. Widespread intraplate volcanism has occurred on the pri- marily submarine New Zealand micro-continent Zealandia almost continuously since its separation from Gondwana approx. 100 Ma ago. This volcanism cannot be directly related to continental rifting and occurred during local periods of both extension and compression. The lack of extended volcanic belts with age progressions in the direc- tion and at the rate of plate motion is not consistent with the plume hypothesis. Volu- minous HIMU-type volcanism was associated with the Cretaceous rifting of Zealandia from Gondwana, consistent with suggestions that a mantle plume or plume head may have been involved in causing the separation of Zealandia from Gondwana (Story et al., 1999). After the “break-up” ∼84 Ma ago, Zealandia drifted ∼6,000 km to the NW. In contrast, lower volumes of eruptives were produced in the Cenozoic. Most mafic (MgO > 5 wt%) Cenozoic lavas define an array between the Cretaceous HIMU-type lavas and Pacific MORB on Sr, Nd, Pb and Hf isotope correlation diagrams, suggest- ing the involvement of the residual HIMU-type plume-type material and the depleted MORB source.
    [Show full text]
  • Mantle Plumes and Intraplate Volcanism Volcanism on the Earth
    Mantle Plumes and Intraplate Volcanism Origin of Oceanic Island Volcanoes EAS 302 Lecture 20 Volcanism on the Earth • Mid-ocean ridges (>90% of the volcanism) – “constructive” plate margins • Subduction-related (much of the rest) – “destructive plate” margins • Volcanism in plate interiors (usually) – , e.g., Yellowstone, Hawaii not explained by the plate tectonic paradigm. Characteristics of Intra-plate Volcanoes • Not restricted to plate margins. • Occur at locations that are stationary relative to plate motions, “hot spots”(pointed out by J. T. Wilson, 1963). • Distinctive isotopic and trace element composition. Hot Spot Traces on the Pacific Ocean Floor The Mantle Plume Model • “ Hot spot” volcanoes are manifestations of mantle plumes: columns of hot rock rising buoyantly from the deep mantle – This idea proposed by W. J. Morgan in 1971. • Evidence – Maintain (almost) fixed positions relative to each other; i.e., they are not affected by plate motions – A number of “hot spots” are associated with “swells”, indicative of hot mantle below – Their magmas are compositionally distinct from mid-ocean ridge basalts and therefore must be derived from a different part of the mantle Current Mantle Plumes The Hawaiian Mantle Plume Age of Hawaiian Volcanism The Hawaiian “Swell” Plumes at the surface • In the last 100-200 km, the plume begins to melt. • Once it reaches the base of the lithosphere, it can no longer rise and spreads out. Isotopic Compositions of Oceanic Island Basalts • Nd and Sr isotope ratios 12 DMM distinct from MORB: 10 derived from separate MORB 8 reservoir which is less 6 depleted (and Society ε Nd 4 sometimes enriched) in HIMU incompatible elements.
    [Show full text]
  • Marinegeology
    _ I\_AGcO--',/_::,5 207247 Reprinted from /,v --,-/S--c/?-. MARINEGEOLOGY INTERNATIONAL JOURNAL OF MARINE GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS Marine Geology 138 (1997) 273 301 Characteristics of seamounts near Hawaii as viewed by GLORIA Nathan T. Bridges Department of Geoscienees, University of Massachusetts, Amherst, MA 01003, USA Received 8 March 1996; accepted 19 November 1996 ELSEVIER ..... rZ MARINE QEOLOQY Editors-in-Chief For Europe, Africa and the Near East: H. Chamley, Universit(_ des Sciences et Techniques de Lille-Artois, S(_dimentologie et G_ochimie, B.P. 36, 59655 Villeneuve d'Ascq, France Tel.: +33-03 20 43 41 30 For the Americas, Pacific and Far East: M.A. Arthur, Department of Geosciences, The Pennsylvania State University, 503 Deike Building, University Park, PA 16802-2714, U.S.A. Tel.: + 1-814-865-6711; Fax: + 1-814-865-3191; E-mail: [email protected] Editorial Board R. Batiza, Honolulu, Hawaii, USA D. Jongsma, O'Connor, A.C.T., D.A. Ross, Woods Hole, Mass., USA W. Berger, La Jolla, Calif., USA Australia W.F. Ruddiman, Charlottesville, Va., USA A.H. Bouma, Baton Rouge, La., USA A.E.S. Kemp, Southampton, UK A.D. Short, Sydney, NSW, Australia A.J. Bowen, Halifax, N.S., Canada N.H. Kenyon, Southampton, UK D.J. Stanley, Washington, D.C., USA L. Carter, Wellington, New Zealand E.M. Klein, Durham, N.C., USA P. Stoffers, Kiel, Germany J.R. Curray, La Jolla, Calif., USA H.J. Knebel, Woods Hole, Mass., USA A.H.B. Stride, Petersfield, UK P.J. Davies, Sydney, N.S.W., Australia S.A.
    [Show full text]
  • 32. Radiometric Ages of Basement Lavas Recovered at Loen, Wodejebato, Mit, and Takuyo-Daisan Guyots, Northwestern Pacific Ocean1
    Haggerty, J.A., Premoli Silva, I., Rack, F., and McNutt, M.K. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 144 32. RADIOMETRIC AGES OF BASEMENT LAVAS RECOVERED AT LOEN, WODEJEBATO, MIT, AND TAKUYO-DAISAN GUYOTS, NORTHWESTERN PACIFIC OCEAN1 Malcolm S. Pringle2 and Robert A. Duncan3 ABSTRACT The best estimate for the age of the oldest volcanism recovered from the summits of Loen, Wodejebato, MIT, and Takuyo- Daisan guyots, northwestern Pacific Ocean, is 113, 83, 123, and 118 Ma, respectively. All of these sites originated in the central and western regions of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The 113-Ma age for Loen Guyot is signifi- cantly different from the 76-Ma age of volcanism under the carbonate platform of its neighbor, the living Anewetak Atoll, and suggests that drowned guyot/living atoll seamount pairs may have no genetically significant relationship other than geographic proximity. Although all of the basalts recovered from the top of Wodejebato Guyot were erupted during polarity Chron 33R (ca. 79-85 Ma), both the occurrence of reworked Cenomanian calcareous nannofossils in one of the summit cores and the existence of a thick Cenomanian volcaniclastic sequence, including 94-Ma basaltic clasts, in the archipelagic apron indicate that there must have been a Cenomanian or older edifice beneath the drilled summit volcanics. AT MIT Guyot, two late-stage periods of volcanism can be recognized: late Aptian (ca. 115 Ma) phreatomagmatic eruptions through the existing volcanic and carbonate platform, and 120-Ma hawaiites seen both as exotic clasts in the 115-Ma tuffs and as lava flows at the top of the basement sequence.
    [Show full text]
  • Geochemistry and Age of Shatsky, Hess, and Ojin Rise Seamounts: Implications for a Connection Between the Shatsky and Hess Rises
    Accepted Manuscript Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises Maria Luisa G. Tejada, Jörg Geldmacher, Folkmar Hauff, Daniel Heaton, Anthony A.P. Koppers, Dieter Garbe-Schönberg, Kaj Hoernle, Ken Heydolph, William W. Sager PII: S0016-7037(16)30165-X DOI: http://dx.doi.org/10.1016/j.gca.2016.04.006 Reference: GCA 9701 To appear in: Geochimica et Cosmochimica Acta Received Date: 4 September 2015 Accepted Date: 1 April 2016 Please cite this article as: Tejada, M.L.G., Geldmacher, J., Hauff, F., Heaton, D., Koppers, A.A.P., Garbe- Schönberg, D., Hoernle, K., Heydolph, K., Sager, W.W., Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises, Geochimica et Cosmochimica Acta (2016), doi: http://dx.doi.org/10.1016/j.gca.2016.04.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications 2 for a connection between the Shatsky and Hess Rises 3 Maria Luisa G. Tejada a,b*, Jörg Geldmacher c, Folkmar Hauff c, Daniel Heaton d, Anthony A.
    [Show full text]
  • Geomorphometric Descriptions of Archipelagic Aprons Off the Southern Flanks of French Frigate Shoals and Necker Island Edifices, Northwest Hawaiian Ridge
    Geomorphometric descriptions of archipelagic aprons off the southern flanks of French Frigate Shoals and Necker Island edifices, Northwest Hawaiian Ridge James V. Gardner†, Brian R. Calder†, and Andrew A. Armstrong† Center for Coastal and Ocean Mapping–Joint Hydrographic Center, 24 Colovos Road, University of New Hampshire, Durham, New Hampshire 03824, USA ABSTRACT landslides are more recent, perhaps even Vogt and Smoot, 1984; Smoot, 1985), or mesh Quaternary in age. The presence of a chute- grids (e.g., Taylor et al., 1975, 1980; Smoot, This study describes the geomorphometries like feature on the mid-flank of the French 1982, 1983a, 1983b, 1985). Recently, studies of archipelagic aprons on the southern flanks Frigate Shoals edifice appears to be the result have utilized modern multibeam data (e.g., De- of the French Frigate Shoals and Necker Is- of rejuvenated volcanism that occurred long plus et al., 2001; Masson et al., 2002; Mitchell land edifices on the central Northwest Hawai- after the initial volcanism ceased to build the et al., 2002; Bohannon and Gardner, 2004; Silver ian Ridge that are hotspot volcanoes that have edifice. et al., 2009; Casalbore et al., 2010; Montanaro been dormant for 10–11 m.y. The archipe- and Beget, 2011; Watt et al., 2012b, 2014; Saint- lagic aprons are related to erosional headwall INTRODUCTION Ange et al., 2013; Ramalho et al., 2015; Watson scarps and gullies on landslide surfaces but et al., 2017; Clare et al., 2018; Counts et al., also include downslope gravitational features Archipelagic aprons are submarine landslide 2018; Pope et al., 2018; Quartau et al., 2018; that include slides, debris avalanches, bed- complexes composed of erosion and deposition- Santos et al., 2019; Casalbore et al., 2020) to form fields, and outrunners.
    [Show full text]
  • Intraplate and Petit-Spot Volcanism Originating from Hydrous Mantle Transition Zone
    EGU2020-5804 https://doi.org/10.5194/egusphere-egu2020-5804 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Intraplate and petit-spot volcanism originating from hydrous mantle transition zone Jianfeng Yang and Manuele Faccenda ([email protected]) Most magmatism occurring on Earth is conventionally attributed to passive mantle upwelling at mid-ocean ridges, slab devolatilization at subduction zones, and mantle plumes. However, the widespread Cenozoic intraplate volcanism in northeast China and the peculiar petit-spot volcanoes offshore the Japan trench cannot be readily associated with any of these mechanisms. Furthermore, the seismic tomography images show remarkable low velocity zones (LVZs) sit above and below the mantle transition zone which are coincidently corresponding to the volcanism. Here we show that most if not all the intraplate/petit-spot volcanism and LVZs present around the Japanese subduction zone can be explained by the Cenozoic interaction of the subducting Pacific slab with a hydrous transition zone. Numerical modelling results indicate that 0.2-0.3 wt.% H2O dissolved in mantle minerals which are driven out from the transition zone in response to subduction and retreat of a stagnant plate is sufficient to reproduce the observations. This suggests that critical amounts of volatiles accumulated in the mantle transition zone due to past subduction episodes and/or delamination of volatile-rich lithosphere could generate abundant dynamics triggered by recent subduction event. This model is probably also applicable to the circum-Mediterranean and Turkish-Iranian Plateau regions characterized by intraplate/petit-spot volcanism and LVZs in the underlying mantle.
    [Show full text]
  • Enigmatic Intraplate Volcanism
    Enigmatic Intraplate Volcanism: A geochronological and geochemical approach for the Marie Byrd Seamounts (Antarctica) and the Christmas Island Seamount Province (Indian Ocean) DISSERTATION zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel Vorgelegt von Andrea Kipf Kiel, 2014 Erster Gutachter: Prof. Dr. Kaj Hoernle Zweiter Gutachter: Dr. habil. Jörg Geldmacher Tag der mündlichen Prüfung: 05.05.2014 Zum Druck genehmigt: ............................................ ................................... Der Dekan 2 Hiermit erkläre ich, dass ich die vorliegende Doktorarbeit selbständig und ohne Zuhilfenahme unerlaubter Hilfsmittel erstellt habe. Weder diese noch eine ähnliche Arbeit wurde an einer anderen Hochschule im Rahmen eines Prüfungsverfahrens vorgelegt, veröffentlicht oder zur Veröffentlichung vorgelegt. Ferner versichere ich, dass die Arbeit unter Einhaltung der Regeln guter wissenschaftlicher Praxis der Deutschen Forschungsgemeinschaft entstanden ist. Kiel, den ................................................................................................................................. Andrea Kipf 3 ABSTRACT: In the world’s oceans, the Hawaii-Emperor Seamounts, the Walvis Ridge and associated Seamount Province as well as the Ninetyeast Ridge and Louisville seamounts are well established examples for age progressive intraplate volcanism related to active upwelling of hot mantle in a stationary plume sensu Wilson (1963). Several seamounts in the Southwest Pacific
    [Show full text]
  • Pacific-Panthalassic Reconstructions
    RESEARCH ARTICLE Pacific‐Panthalassic Reconstructions: Overview, Errata 10.1029/2019GC008402 and the Way Forward Key Points: Trond H. Torsvik1,2 , Bernhard Steinberger3,1 , Grace E. Shephard1 , • We devised a new absolute Late 1 1 1 1 Jurassic‐Cretaceous Pacific plate Pavel V. Doubrovine , Carmen Gaina , Mathew Domeier , Clinton P. Conrad , model and William W. Sager4 • This study was motivated because published Pacific plate models 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway, 2School of Geosciences, University – fl (83.5 150 Ma) are variably awed of Witwatersrand, Johannesburg, South Africa, 3Helmholtz Centre Potsdam, GFZ, Potsdam, Germany, 4Department of • The emplacement of the Shatsky Rise Large Igneous Province at ~144 Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA Ma caused a major plate boundary reorganization Abstract We have devised a new absolute Late Jurassic‐Cretaceous Pacific plate model using a fixed hot spot approach coupled with paleomagnetic data from Pacific large igneous provinces (LIPs) while simultaneously minimizing plate velocity and net lithosphere rotation (NR). This study was motivated Correspondence to: fi ‐ ‐ fl T. H. Torsvik, because published Paci c plate models for the 83.5 to 150 Ma time interval are variably awed, and their [email protected] use affects modeling of the entire Pacific‐Panthalassic Ocean and interpretation of its margin evolution. These flaws could be corrected, but the revised models would imply unrealistically high plate velocities fi Citation: and NR. We have developed three new Paci c realm models with varying degrees of complexity, but we Torsvik, T. H., Steinberger, B., focus on the one that we consider most realistic.
    [Show full text]
  • Ages of Seamounts, Islands and Plateaus on the Pacific Plate Version 2.1 - 15 May 2004
    Ages of seamounts, islands and plateaus on the Pacific plate version 2.1 - 15 May 2004 Valérie Clouard(1) and Alain Bonneville(2) [email protected] [email protected] (1) Departamento de Geofisica - U. de Chile Blanco Encalada 2002 / Casilla 2777 / Santiago / Chile Tel. : +56 2 678 42 96 / Fax: +56 2 696 86 86 (2) Lab. Géosciences Marines / Institut de Physique du Globe / CNRS 4, Place Jussieu/ 75252 Paris Cedex 05 / France Tel.:+33 1 44 27 68 94 / Fax: +33 1 44 27 99 69 This report presents a compilation of reliable dating of seamounts and islands of the Pacific plate (1300 samples). Paleomagnetic ages obtained from seamount magnetism have not been considered. We also do not consider foraminifers ages which only give minimum ages of seamounts. Only radiometric ages are thus considered, and Ar/Ar ages are preferred over K/Ar, when both exist at the same place. The following table presents the results of this compilation with the references of the selected data. An average age (as used in [1] and [2]) is proposed when several ages have been determined for the same volcanic stage, in this case the geographical coordinates are given only once on the line of the average age. When several volcanic stages exist for a same seamount or island, their ages are also presented with the same rule as above. NB: an ASCII file (ages_pacific_v2.1.dat) with only average ages and geographical coordinates is also available for plotting purposes. Averag Average Name (island, Long. E Latitude Age Error Island or seamount e age error seamount, plateau or Method Ref.
    [Show full text]
  • Article in Press + Model
    ARTICLE IN PRESS + MODEL Earth and Planetary Science Letters xx (2006) xxx–xxx 1 www.elsevier.com/locate/epsl 2 Cenozoic intraplate volcanism on New Zealand: 3 Upwelling induced by lithospheric removal ⁎ 4 K. Hoernle a, , J.D.L. White b, P. van den Bogaard c, F. Hauff c, D.S. Coombs b, 5 R. Werner d, C. Timm c, D. Garbe-Schönberg e, A. Reay b, A.F. Cooper b 6 a IFM-GEOMAR Leibniz Institute for Marine Sciences at the Christian Albrechts University of Kiel, Wischhofstr. 1-3, D-24148 Kiel, Germany 7 b Geology Department, University of Otago, PO Box 56, Dunedin 9015, New Zealand 8 c IFM-GEOMAR Leibniz Institute for Marine Sciences, Wischhofstr. 1-3, D-24148 Kiel, Germany 9 d Tethys Geoconsulting GmbH, Wischhofstraβe 1-3, 24148 Kiel, Germany 10 e Institut für Geowissenschaften, Christian Albrechts University of Kiel, Ludewig-Meyn-Strasse 10, 24118 Kiel, Germany 11 Received 21 December 2005; received in revised form 31 May 2006; accepted 1 June 2006 12 PROOF 13 Editor: R.W. Carlson 14 Abstract 15 Diffuse intraplate volcanism spanning the Cenozoic on the North, South,ED Chatham, Auckland, Campbell and Antipodes Islands of 16 New Zealand has produced quartz tholeiitic to basanitic/nephelinitic (including their differentiates) monogenetic volcanic fields and 17 large shield volcanoes. New 40Ar/39Ar ages, combined with published age data, show no correlations among age, location or 18 composition of the volcanoes. Continuous volcanism in restricted areas over long time periods, and a lack of volcanic age progressions in 19 the direction and at the rate of plate motion, are inconsistent with a plume origin for the intraplate volcanism.
    [Show full text]