Identification of KRT16 As a Target of an Autoantibody Response in Complex Regional Pain Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Identification of KRT16 As a Target of an Autoantibody Response in Complex Regional Pain Syndrome Experimental Neurology 287 (2017) 14–20 Contents lists available at ScienceDirect Experimental Neurology journal homepage: www.elsevier.com/locate/yexnr Research Paper Identification of KRT16 as a target of an autoantibody response in complex regional pain syndrome Maral Tajerian, PhD a,b,c,⁎, Victor Hung, BSc a,c, Hamda Khan, BSc a,c, Lauren J Lahey, BSc a,c,d,YuanSun,PhDa,b,c, Frank Birklein, MD e, Heidrun H. Krämer, PhD f, William H Robinson, PhD a,c,d, Wade S Kingery, MD a,c,g, J David Clark, MD, PhD a,b,c a Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA b Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA c Palo Alto Veterans Institute for Research, Palo Alto, CA, USA d Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA e Department of Neurology, University Medical Center, Mainz, Germany f Department of Neurology, Justus Liebig University, Giessen, Germany g Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA article info abstract Article history: Objective: Using a mouse model of complex regional pain syndrome (CRPS), our goal was to identify autoantigens Received 6 September 2016 in the skin of the affected limb. Received in revised form 12 October 2016 Methods: A CRPS-like state was induced using the tibia fracture/cast immobilization model. Three weeks after Accepted 18 October 2016 fracture, hindpaw skin was homogenized, run on 2-d gels, and probed by sera from fracture and control mice. Available online 20 October 2016 Spots of interest were analyzed by liquid chromatography-mass spectroscopy (LC-MS) and the list of targets val- idated by examining their abundance and subcellular localization. In order to measure the autoantigenicity of se- Keywords: lected protein targets, we quantified the binding of IgM in control and fracture mice sera, as well as in control and Complex regional pain syndrome Autoimmunity CRPS human sera, to the recombinant protein. Antigen identification Results: We show unique binding between fracture skin extracts and fracture sera, suggesting the presence of Keratin 16 auto-antigens. LC-MS analysis provided us a list of potential targets, some of which were upregulated after frac- Skin ture (KRT16, eEF1a1, and PRPH), while others showed subcellular-redistribution and increased membrane local- Chronic pain ization (ANXA2 and ENO3). No changes in protein citrullination or carbamylation were observed. In addition to Animal models of pain increased abundance, KRT16 demonstrated autoantigenicity, since sera from both fracture mice and CRPS pa- tients showed increased autoantibody binding to recombinant kRT16 protein. Conclusions: Pursuing autoimmune contributions to CRPS provides a novel approach to understanding the condi- tion and may allow the development of mechanism-based therapies. The identification of autoantibodies against KRT16 as a biomarker in mice and in humans is a critical step towards these goals, and towards redefining CRPS as having an autoimmune etiology. © 2016 Elsevier Inc. All rights reserved. 1. Introduction understanding of the syndrome, thus often preventing effective treat- ment or cure. Complex Regional Pain Syndrome (CRPS) is a chronic and debilitat- Historically, CRPS research has focused on areas such as sympathetic ing condition comprised of a host of seemingly unrelated signs and nervous system dysfunction, neurogenic inflammation, and peripheral symptoms including bone demineralization, skin growth changes, vas- and spinal nociceptive sensitization and brain reorganization as poten- cular dysfunction and pain. There are an estimated 50,000 new cases tial mechanisms (Tajerian and Clark, 2016). More recently, however, a in the US each year, and in most cases, the symptoms are limited to a collection of clinical and preclinical observations has suggested an auto- single extremity (de Mos et al., 2007). Despite the fact that CRPS was de- immune etiology. Agonistic anti-sympathetic autoantibodies have been scribed over a century ago, we still lack a comprehensive mechanistic shown in a subgroup of CRPS patients (Kohr et al., 2011) and, clinically, low dose intravenous immunoglobulin controlled CRPS symptoms in some patients (Goebel et al., 2010). In an animal model of mild tissue ⁎ Corresponding author at: Anesthesia Service Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94304, USA. trauma, IgG from CRPS patients worsened the existing nociceptive sen- E-mail address: [email protected] (M. Tajerian). sitization (Tekus et al., 2014). Moreover, in a well-characterized mouse http://dx.doi.org/10.1016/j.expneurol.2016.10.011 0014-4886/© 2016 Elsevier Inc. All rights reserved. M. Tajerian et al. / Experimental Neurology 287 (2017) 14–20 15 tibia fracture/cast model of CRPS, we reported attenuated CRPS-like Table 1 symptoms in subjects treated with anti-CD20 and in mu-MT mice lack- CRPS serum donor information. ing mature B cells (Li et al., 2014). Finally, we observed increased IgM Subject ID deposition in the skin of the affected hindpaw not explained by vascular 12 345 leak of immune complexes, thereby suggesting the presence of auto-an- tigens in skin tissue, which could be responsible for regionalized trophic Age 24 43 44 45 50 Sex Female Female Male Female Male changes, allodynia, and other signs of the syndrome (Li et al., 2014). CRPS duration 4 months 11 months 2 weeks 7 years 4 weeks In the current study we employed the mouse tibia fracture/cast im- CRPS location Right foot Left hand Left hand Right foot Left hand mobilization model to address the critical issue of identifying the target CRPS cause Surgery Fracture Fracture Fracture Contusion antigen(s) of potentially CRPS-related autoantibodies in skin. The iden- Edema Yes Yes Yes No Yes Allodynia Yes No No Yes No tification of such proteins would both support the autoimmune hypoth- Pain NRS 6 9 7 8 8.5 esis and provide biomarkers useful in following disease activity and responses to treatments. NRS = Numeric Rating Scale. 2. Materials and methods 2.4. Gel electrophoresis 2.1. Animals 2.4.1. 2-Dimensional 200 μg of protein was precipitated in acetone, centrifuged at 7800 g, – Male C57/B6J mice aged 12 14 weeks (Jackson Labs) were housed in and the pellet was rehydrated and incubated with the IPG strips (PH 5– groups of 4 (12-h light/dark cycle, ambient temperature of 22 ± 3 °C, 8, 11 cm; BioRad). One-dimensional isoelectric focusing was carried out with food and water available ad libitum). All animal procedures and using an IEF protean cell (Biorad). The IPG strips were then equilibrated experimental designs were approved by the Veterans Affairs Palo Alto and subjected to two-dimensional separation according to standard Health Care System Institutional Animal Care and Use Committee and protocols. followed the “animal subjects” guidelines of the International Association for the Study of Pain. 2.4.2. 1-Dimensional (vertical) Vertical gel electrophoresis was performed (in preparation for West- 2.2. Limb fracture and cast immobilization ern blotting) according to standard sodium dodecyl sulfate polyacryl- amide gel electrophoresis procedures. Mice were anesthetized with 1.5% isoflurane and underwent a distal tibial fracture in the right hind limb. Immediately following fracture and 2.5. Mass spectrometry while still under anesthesia, a cast was placed around the injured hindlimb as previously described (Li et al., 2014). Three weeks after sur- 2.5.1. In-gel digestion fl gery, the mice were anesthetized (iso urane) and the casts were Per standard procedures, gel bands were washed with MilliQ water, removed. destained, dehydrated, and dried in a speed-vac (Thermo Savant). The gel pieces were rehydrated and incubated at 56 °C for 20 min. After discarding the supernatant, the gel pieces were incubated in 15 mM 2.3. Sample preparation iodoacetamide, washed with water and dehydrated and dried as before. The dried gel pieces were rehydrated and the reaction mixture was then All analysis was done blind to the identity and experimental condi- acidified and desalted. Peptides were eluted and lyophilized in a tion of the subject or tissue. SpeedVac (Thermo Savant). 2.3.1. Mice Mice were deeply anesthetized using isoflurane, and blood was Table 2 collected via cardiac puncture. The ventral hindpaw skin was then List of antibodies used. − dissected and stored at 20 °C. Following clotting at room tempera- Antibody Supplier; cat. # Dilution Application ture, blood was centrifuged at 10,000 ×g and the supernatant serum Primary antibodies was collected. Rabbit monoclonal Abcam; 157,455 1:20,000 WB Total protein from skin and serum samples: Skin was homogenized anti eEF1A1 using T-PER Protein Extraction Reagent (Thermo Scientific) with pro- Mouse monoclonal Abcam; 129,007 1:5000 WB teinase and phosphatase inhibitors (Roche Applied Science), centri- anti PRPH Rabbit Polyclonal anti Abcam; 41,803 1:1000 WB fuged at 12,000 ×g, and supernatant fractions were collected. ANXA2 Protein extracts from subcellular fractions: Cytoplasmic, membrane, Rabbit polyclonal anti ENO3 Abcam; 96,334 1:500 WB nuclear soluble, chromatin-bound, and cytoskeletal protein extracts Rabbit monoclonal anti Abcam; 181,602 1:5000 WB from skin samples were separated using a subcellular fractionation kit GAPDH (Thermo Scientific). Rabbit polyclonal anti KRT16 Abcam; 182,791 1:500 WB Secondary antibodies IrDye 800CW Goat anti LI-COR Biosciences; 1:20,000 WB/DB 2.3.2. Human sera mouse IgM 926–32,280 The study protocol was approved by the institutional review board DyLight 800 Goat anti Thermo Fisher; 1:10,000 WB/DB human IgM SA5–10,108 at the Justus Liebig University (Gießen, Germany). Sera were collected IrDye 800CW Goat anti LI-COR Biosciences; 1:20,000 WB from CRPS patients, and 5 serum samples were chosen at random to rabbit IgG 925–32,211 represent both acute and chronic stages of the syndrome (see Table 1 IrDye 800CW Goat anti LI-COR Biosciences; 1:20,000 WB for details; all patients fulfilled the CRPS research criteria).
Recommended publications
  • Targeted Genes and Methodology Details for Neuromuscular Genetic Panels
    Targeted Genes and Methodology Details for Neuromuscular Genetic Panels Reference transcripts based on build GRCh37 (hg19) interrogated by Neuromuscular Genetic Panels Next-generation sequencing (NGS) and/or Sanger sequencing is performed Motor Neuron Disease Panel to test for the presence of a mutation in these genes. Gene GenBank Accession Number Regions of homology, high GC-rich content, and repetitive sequences may ALS2 NM_020919 not provide accurate sequence. Therefore, all reported alterations detected ANG NM_001145 by NGS are confirmed by an independent reference method based on laboratory developed criteria. However, this does not rule out the possibility CHMP2B NM_014043 of a false-negative result in these regions. ERBB4 NM_005235 Sanger sequencing is used to confirm alterations detected by NGS when FIG4 NM_014845 appropriate.(Unpublished Mayo method) FUS NM_004960 HNRNPA1 NM_031157 OPTN NM_021980 PFN1 NM_005022 SETX NM_015046 SIGMAR1 NM_005866 SOD1 NM_000454 SQSTM1 NM_003900 TARDBP NM_007375 UBQLN2 NM_013444 VAPB NM_004738 VCP NM_007126 ©2018 Mayo Foundation for Medical Education and Research Page 1 of 14 MC4091-83rev1018 Muscular Dystrophy Panel Muscular Dystrophy Panel Gene GenBank Accession Number Gene GenBank Accession Number ACTA1 NM_001100 LMNA NM_170707 ANO5 NM_213599 LPIN1 NM_145693 B3GALNT2 NM_152490 MATR3 NM_199189 B4GAT1 NM_006876 MYH2 NM_017534 BAG3 NM_004281 MYH7 NM_000257 BIN1 NM_139343 MYOT NM_006790 BVES NM_007073 NEB NM_004543 CAPN3 NM_000070 PLEC NM_000445 CAV3 NM_033337 POMGNT1 NM_017739 CAVIN1 NM_012232 POMGNT2
    [Show full text]
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • Blueprint Genetics ENO3 Single Gene Test
    ENO3 single gene test Test code: S00654 Phenotype information Glycogen storage disease Panels that include the ENO3 gene Glycogen Storage Disorder Panel Comprehensive Metabolism Panel Hypoglycemia, Hyperinsulinism and Ketone Metabolism Panel Metabolic Myopathy and Rhabdomyolysis Panel Test Strengths The strengths of this test include: CAP accredited laboratory CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance Careful construction of clinically effective and scientifically justified gene panels Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level Our publicly available analytic validation demonstrating complete details of test performance ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this test’) Our rigorous variant classification scheme Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data Our comprehensive clinical statements Test Limitations This test does not detect the following: Complex inversions Gene conversions Balanced translocations Mitochondrial DNA variants Repeat expansion disorders unless specifically mentioned Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above non-coding variants covered by the test). This test may not reliably detect the following: Low level mosaicism (variant with a minor allele fraction of 14.6% is detected with 90% probability) Stretches of mononucleotide repeats Indels larger than 50bp Single exon deletions or duplications Variants within pseudogene regions/duplicated segments The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Microenvironmental Reprogramming of Thymic Epithelial Cells to Skin Multipotent Stem Cells
    Vol 466 | 19 August 2010 | doi:10.1038/nature09269 LETTERS Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells Paola Bonfanti1,2{, Ste´phanie Claudinot1,2, Alessandro W. Amici1,2, Alison Farley3, C. Clare Blackburn3 & Yann Barrandon1,2 The thymus develops from the third pharyngeal pouch of the or double positive cells (16%). After serial passaging, less than 2% of anterior gut and provides the necessary environment for thymo- the cells were positive for K8/18, while all were positive for K5/14, a poiesis (the process by which thymocytes differentiate into mature situation maintained in serial cultivation (Supplementary Fig. 1a). T lymphocytes) and the establishment and maintenance of self- These data indicate that clonogenic TECs originate from both the tolerance1–3. It contains thymic epithelial cells (TECs) that form a cortex and the medulla but that serial cultivation predominantly complex three-dimensional network organized in cortical and selected for a medullary phenotype. Clonogenic TECs were then medullary compartments, the organization of which is notably dif- ferent from simple or stratified epithelia4. TECs have an essential ab role in the generation of self-tolerant thymocytes through expres- sion of the autoimmune regulator Aire5,6, but the mechanisms involved in the specification and maintenance of TECs remain unclear7–9. Despite the different embryological origins of thymus and skin (endodermal and ectodermal, respectively), some cells of 10–12 the thymic medulla express stratified-epithelium markers , 4 105 79.3 15.1 10 interpreted as promiscuous gene expression. Here we show that 19.3 70.1 104 the thymus of the rat contains a population of clonogenic TECs 103 3 that can be extensively cultured while conserving the capacity to EGFP 10 EpCAM 102 integrate in a thymic epithelial network and to express major 102 0 histocompatibility complex class II (MHC II) molecules and Aire.
    [Show full text]
  • Progress in the Biological Function of Alpha-Enolase
    Animal Nutrition 2 (2016) 12e17 Contents lists available at ScienceDirect Animal Nutrition journal homepage: http://www.keaipublishing.com/en/journals/aninu/ Review article Progress in the biological function of alpha-enolase * Hong Ji 1, Jianfa Wang 1, Jingru Guo, Yue Li, Shuai Lian, Wenjin Guo, Huanmin Yang , Fanzhi Kong, Li Zhen, Li Guo, Yanzhi Liu College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China article info abstract Article history: Alpha-enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a metalloenzyme that cata- Received 16 December 2015 lyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid in the glycolytic pathway. It Accepted 3 February 2016 is a multifunctional glycolytic enzyme involved in cellular stress, bacterial and fungal infections, auto- Available online 2 March 2016 antigen activities, the occurrence and metastasis of cancer, parasitic infections, and the growth, devel- opment and reproduction of organisms. This article mainly reviews the basic characteristics and Keywords: biological functions of ENO1. a-enolase © 2016, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting Glycolysis Plasma plasminogen by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the Cancer CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Parasite 1. Introduction present article mainly reviews the basic characteristics and bio- logical functions
    [Show full text]
  • Transcriptional and Post-Transcriptional Regulation of ATP-Binding Cassette Transporter Expression
    Transcriptional and Post-transcriptional Regulation of ATP-binding Cassette Transporter Expression by Aparna Chhibber DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmaceutical Sciences and Pbarmacogenomies in the Copyright 2014 by Aparna Chhibber ii Acknowledgements First and foremost, I would like to thank my advisor, Dr. Deanna Kroetz. More than just a research advisor, Deanna has clearly made it a priority to guide her students to become better scientists, and I am grateful for the countless hours she has spent editing papers, developing presentations, discussing research, and so much more. I would not have made it this far without her support and guidance. My thesis committee has provided valuable advice through the years. Dr. Nadav Ahituv in particular has been a source of support from my first year in the graduate program as my academic advisor, qualifying exam committee chair, and finally thesis committee member. Dr. Kathy Giacomini graciously stepped in as a member of my thesis committee in my 3rd year, and Dr. Steven Brenner provided valuable input as thesis committee member in my 2nd year. My labmates over the past five years have been incredible colleagues and friends. Dr. Svetlana Markova first welcomed me into the lab and taught me numerous laboratory techniques, and has always been willing to act as a sounding board. Michael Martin has been my partner-in-crime in the lab from the beginning, and has made my days in lab fly by. Dr. Yingmei Lui has made the lab run smoothly, and has always been willing to jump in to help me at a moment’s notice.
    [Show full text]
  • Full Disclosure Forms
    Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS Xia Tian, PhD* ABSTRACT * Wen-Chen Liang, MD Objective: To establish and evaluate the effectiveness of a comprehensive next-generation * Yanming Feng, PhD sequencing (NGS) approach to simultaneously analyze all genes known to be responsible for Jing Wang, MD the most clinically and genetically heterogeneous neuromuscular diseases (NMDs) involving spi- Victor Wei Zhang, PhD nal motoneurons, neuromuscular junctions, nerves, and muscles. Chih-Hung Chou, MS Methods: All coding exons and at least 20 bp of flanking intronic sequences of 236 genes causing Hsien-Da Huang, PhD NMDs were enriched by using SeqCap EZ solution-based capture and enrichment method fol- Ching Wan Lam, PhD lowed by massively parallel sequencing on Illumina HiSeq2000. Ya-Yun Hsu, PhD ; 3 Thy-Sheng Lin, MD Results: The target gene capture/deep sequencing provides an average coverage of 1,000 per Wan-Tzu Chen, MS nucleotide. Thirty-five unrelated NMD families (38 patients) with clinical and/or muscle pathologic Lee-Jun Wong, PhD diagnoses but without identified causative genetic defects were analyzed. Deleterious mutations Yuh-Jyh Jong, MD were found in 29 families (83%). Definitive causative mutations were identified in 21 families (60%) and likely diagnoses were established in 8 families (23%). Six families were left without diagnosis due to uncertainty in phenotype/genotype correlation and/or unidentified causative Correspondence to genes. Using this comprehensive panel, we not only identified mutations in expected genes but Dr. Wong: also expanded phenotype/genotype among different subcategories of NMDs. [email protected] or Dr. Jong: Conclusions: Target gene capture/deep sequencing approach can greatly improve the genetic [email protected] diagnosis of NMDs.
    [Show full text]
  • Protein Expression Profiling in the Zebrafish (Danio Rerio) Embryos
    Proteomics 2011, 11, 2003–2018 DOI 10.1002/pmic.201000442 2003 RESEARCH ARTICLE Protein expression profiling in the zebrafish (Danio rerio) embryos exposed to the microcystin-LR Guangyu Li1, Jun Chen1, Ping Xie1, Yan Jiang1, Laiyan Wu1 and Xuezhen Zhang 2 1 Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, P. R. China 2 Fisheries College of Huazhong Agricultural University, Wuhan, P. R. China Microcystin-leucine-arginine (MCLR) is the most toxic and the most commonly encountered Received: July 17, 2010 variant of microcystins (MCs) in aquatic environment, and it has the potential for develop- Revised: January 22, 2011 mental toxicity. A number of previous studies have described the developing toxicity of MCLR Accepted: February 1, 2011 based on conventional toxicological indices. However, the molecular mechanisms by which it expresses its toxicity during the early development remain largely unknown. To further our understanding of mechanisms of action and identify the potential protein biomarkers for MCLR exposure, a proteomic analysis was performed on developing zebrafish embryos exposed to 0.5 mg/L MCLR until 96 hours post-fertilization. 2-DE combined with MS was employed to detect and identify the protein profiles. Results showed that 75 spots from the 0.5 mg/L MCLR condition showed a significant increase or decrease in abundance compared with the control. In total, 40 proteins were identified. These proteins were mainly included in process related to oxidative stress, energetic metabolism, and the cytoskeleton assembly. MCLR exposure also affects the expression of the subunits of protein phosphatases 2A.
    [Show full text]
  • Molecular Diagnosis of Glycogen Storage Disease and Disorders with Overlapping Clinical Symptoms by Massive Parallel Sequencing
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Molecular diagnosis of glycogen storage disease and disorders with overlapping clinical symptoms by massive parallel sequencing Ana I Vega, PhD1,2,3, Celia Medrano, BSc1,2,3, Rosa Navarrete, BSc1,2,3, Lourdes R Desviat, PhD1,2,3, Begoña Merinero, PhD1,2,3, Pilar Rodríguez-Pombo, PhD1,2,3, Isidro Vitoria, MD, PhD4, Magdalena Ugarte, PhD1,2,3, Celia Pérez-Cerdá, PhD1,2,3 and Belen Pérez, PhD1,2,3 Purpose: Glycogen storage disease (GSD) is an umbrella term for a Results: Pathogenic mutations were detected in 23 patients. group of genetic disorders that involve the abnormal metabolism of ­Twenty-two mutations were recognized (mostly loss-of-function glycogen; to date, 23 types of GSD have been identified. The nonspe- mutations), including 11 that were novel in GSD-associated genes. In cific clinical presentation of GSD and the lack of specific biomarkers addition, CES detected five patients with mutations in ALDOB, LIPA, mean that Sanger sequencing is now widely relied on for making a NKX2-5, CPT2, or ANO5. Although these genes are not involved in diagnosis. However, this gene-by-gene sequencing technique is both GSD, they are associated with overlapping phenotypic characteristics laborious and costly, which is a consequence of the number of genes such as hepatic, muscular, and cardiac dysfunction. to be sequenced and the large size of some genes. Conclusions: These results show that next-generation sequenc- ing, in combination with the detection of biochemical and clinical Methods: This work reports the use of massive parallel sequencing hallmarks, provides an accurate, high-throughput means of making to diagnose patients at our laboratory in Spain using either a cus- genetic diagnoses of GSD and related diseases.
    [Show full text]
  • The TFG-TEC Oncoprotein Induces Transcriptional Activation of the Human B-Enolase Gene Via Chromatin Modification of the Promoter Region
    MOLECULAR CARCINOGENESIS 55:1411–1423 (2016) The TFG-TEC Oncoprotein Induces Transcriptional Activation of the Human b-Enolase Gene Via Chromatin Modification of the Promoter Region Ah-young Kim, Bobae Lim, JeeHyun Choi, and Jungho Kim* Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea Recurrent chromosome translocations are the hallmark of many human cancers. A proportion of human extraskeletal myxoid chondrosarcomas (EMCs) are associated with the characteristic chromosomal translocation t(3;9)(q11–12;q22), which results in the formation of a chimeric protein in which the N-terminal domain of the TRK-fused gene (TFG) is fused to the translocated in extraskeletal chondrosarcoma (TEC; also called CHN, CSMF, MINOR, NOR1, and NR4A3) gene. The oncogenic effect of this translocation may be due to the higher transactivation ability of the TFG-TEC chimeric protein; however, downstream target genes of TFG-TEC have not yet been identified. The results presented here, demonstrate that TFG-TEC activates the human b-enolase promoter. EMSAs, ChIP assays, and luciferase reporter assays revealed that TFG-TEC upregulates b-enolase transcription by binding to two NGFI-B response element motifs located upstream of the putative transcription start site. In addition, northern blot, quantitative real-time PCR, and Western blot analyses showed that overexpression of TFG-TEC up-regulated b-enolase mRNA and protein expression in cultured cell lines. Finally, ChIP analyses revealed that TFG-TEC controls the activity of the endogenous b-enolase promoter by promoting histone H3 acetylation. Overall, the results presented here indicate that TFG-TEC triggers a regulatory gene hierarchy implicated in cancer cell metabolism.
    [Show full text]