2005 | Volume 31
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al. -
Funchal 2010 5 Anos Jardim Botânico Da Madeira – Eng.º Rui Vieira
Funchal 2010 5 Anos JArdim Botânico dA mAdeirA – eng.º rui vieirA 3 Índice capítulo 1 - Luisa Gouveia. jardim Botânico da madeira enG.º rui Vieira ................. 00 1.1 Historial ............................................................................................................ 00 1.2. uma instituição ao serviço da conservação, da educação ambiental e do uso público. ............................................................................................. 00 capítulo 2 - josé augusto carvalho, francisco fernandes, carlos Lobo. a inVestiGação e conserVação da diVersidade VeGetaL no jardim Botânico da madeira enG.º rui Vieira 1. introdução........................................................................................................... 00 1.2. Banco de sementes ...................................................................................... 00 1.3. Herbário ...................................................................................................... 00 1.4. Bancos de Adn ........................................................................................... 00 1.5 Plantas vivas ................................................................................................. 00 2. casos de estudo .................................................................................................. 00 2.1. sistemática e taxonomia ............................................................................. 00 2.1.1. massarocos no arquipélago da madeira ............................................. 00 -
PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest
PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest Communities Table of Contents (click to go to page) HCCREMS Mapping ....................................................................... 3 Field Data Sheet ............................................................................. 4 Which of the following descriptions best describes your site? ................................................................ 5 Which plant community is it? .......................................................... 9 Rainforest communities of the Lower Hunter .................................. 11 Common Rainforest Species of the Lower Hunter ........................................................................ 14 A picture guide to common rainforest species of the Lower Hunter ........................................................... 17 Weeding of Rainforest Remnants ................................................... 25 Rainforest Regeneration near Black Jacks Point ............................ 27 Protection of Rainforest Remnants in the Lower Hunter & the Re-establishment of Diverse, Indigenous Plant Communities ... 28 Guidelines for a rainforest remnant planting program ..................... 31 Threatened Species ....................................................................... 36 References ..................................................................................... 43 Acknowledgements......................................................................... 43 Image Credits ................................................................................ -
Journal Editorial Staff: Rachel Cobb, David Pfaff, Patricia Riley Hammer, Henri Nier, Suzanne Pierot, Sabina Sulgrove, Russell Windle
Spring 2010 Volume 36 IVY J OURNAL IVY OF THE YEAR 2011 Hedera helix ‘Ivalace’ General Information Press Information American Ivy Society [email protected] P. O. Box 163 Deerfield, NJ 08313 Ivy Identification, Registration Membership Russell A. Windle The American Ivy Society Membership American Ivy Society Laurie Perper P.O. Box 461 512 Waterford Road Lionville, PA 19353-0461 Silver Spring, MD, 20901 [email protected] Officers and Directors President—Suzanne Warner Pierot Treasurer—Susan Hendley Membership—Laurie Perper Registrar, Ivy Research Center Director—Russell Windle Taxonomist—Dr. Sabina Mueller Sulgrove Rosa Capps, Rachel Cobb, Susan Cummings, Barbara Furlong, Patricia Riley Hammer, Constance L. Meck, Dorothy Rouse, Daphne Pfaff, Pearl Wong Ivy Journal Editorial Staff: Rachel Cobb, David Pfaff, Patricia Riley Hammer, Henri Nier, Suzanne Pierot, Sabina Sulgrove, Russell Windle The Ivy Journal is published once per year by the American Ivy Society, a nonprofit educational organization. Membership includes a new ivy plant each year, subscription to the Ivy Journal and Between the Vines, the newsletter of The American Ivy Society. Editorial submissions are welcome. Mail typed, double-spaced manuscript to the Ivy Journal Editor, The American Ivy Society. Enclose a self-addressed, stamped envelope if you wish manuscript and/ or artwork to be returned. Manuscripts will be handled with reasonable care. However, AIS assumes no responsibility for safety of artwork, photographs, or manuscripts. Every precaution is taken to ensure accuracy but AIS cannot accept responsibility for the corrections or accuracy of the information supplied herein or for any opinion expressed. The American Ivy Society P. O. Box 163, Deerfield Street, NJ 08313 www.ivy.org Remember to send AIS your new address. -
Supplementary Notes to the Flora of Cyprus IV
Willdenowia 34 – 2004 427 doi:10.3372/wi.34.34210 (available via http://dx.doi.org/) RALF HAND (ed.) Supplementary notes to the flora of Cyprus IV. Abstract Hand, R. (ed.): Supplementary notes to the flora of Cyprus IV. – Willdenowia 34: 427-456. – ISSN 0511-9618; © 2004 BGBM Berlin-Dahlem. Focussing again on the chorology of vascular plants in Cyprus, the present notes summarize contribu- tions by various authors. This instalment includes data on 164 taxa. Chenopodium striatiforme and C. strictum are new for the island. Taxonomic considerations result in the validation of the new combina- tion Hedera pastuchovii subsp. cypria. Lactuca triquetra, a remarkable but much neglected endemic of Cyprus and Lebanon, is discussed as regards its taxonomy, distribution and ecology; its chromosome number (2n = 18) is given for the first time. Introduction As in the first three parts of the series this instalment continues to summarize supplements to the flora of Cyprus, contributed by various botanists. Again, the additions concentrate on chorologi- cal data. Explanations and criteria for the inclusion of data in this series have been published in Willdenowia 30: 53-54. It should be stressed that apart from Meikle’s (1977, 1985) detailed stan- dard flora, and floristic treatments on Cyprus published since, all known papers widely scattered in the taxonomic literature have been considered when accepting specimen-based records as sup- plementary. A database containing such records is being completed continuously. Meanwhile, all specimens of the editor’s herbarium including the Cyprus collections of K. P. Buttler have been transferred to the Berlin herbarium (B). -
Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae. -
Checklist of the Vascular Alien Flora of Catalonia (Northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3
BOTANICAL CHECKLISTS Mediterranean Botany ISSNe 2603-9109 https://dx.doi.org/10.5209/mbot.63608 Checklist of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3 Received: 7 March 2019 / Accepted: 28 June 2019 / Published online: 7 November 2019 Abstract. This is an inventory of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) updated to 2018, representing 1068 alien taxa in total. 554 (52.0%) out of them are casual and 514 (48.0%) are established. 87 taxa (8.1% of the total number and 16.8 % of those established) show an invasive behaviour. The geographic zone with more alien plants is the most anthropogenic maritime area. However, the differences among regions decrease when the degree of naturalization of taxa increases and the number of invaders is very similar in all sectors. Only 26.2% of the taxa are more or less abundant, while the rest are rare or they have vanished. The alien flora is represented by 115 families, 87 out of them include naturalised species. The most diverse genera are Opuntia (20 taxa), Amaranthus (18 taxa) and Solanum (15 taxa). Most of the alien plants have been introduced since the beginning of the twentieth century (70.7%), with a strong increase since 1970 (50.3% of the total number). Almost two thirds of alien taxa have their origin in Euro-Mediterranean area and America, while 24.6% come from other geographical areas. The taxa originated in cultivation represent 9.5%, whereas spontaneous hybrids only 1.2%. From the temporal point of view, the rate of Euro-Mediterranean taxa shows a progressive reduction parallel to an increase of those of other origins, which have reached 73.2% of introductions during the last 50 years. -
Este Trabalho Não Teria Sido Possível Sem O Contributo De Algumas Pessoas Para As Quais Uma Palavra De Agradecimento É Insufi
AGRADECIMENTOS Este trabalho não teria sido possível sem o contributo de algumas pessoas para as quais uma palavra de agradecimento é insuficiente para aquilo que representaram nesta tão importante etapa. O meu mais sincero obrigado, Ao Nuno e à minha filha Constança, pelo apoio, compreensão e estímulo que sempre me deram. Aos meus pais, Gaspar e Fátima, por toda a força e apoio. Aos meus orientadores da Dissertação de Mestrado, Professor Doutor António Xavier Pereira Coutinho e Doutora Catarina Schreck Reis, a quem eu agradeço todo o empenho, paciência, disponibilidade, compreensão e dedicação que por mim revelaram ao longo destes meses. À Doutora Palmira Carvalho, do Museu Nacional de História Natural/Jardim Botânico da Universidade de Lisboa por todo o apoio prestado na identificação e reconhecimento dos líquenes recolhidos na mata. Ao Senhor Arménio de Matos, funcionário do Jardim Botânico da Universidade de Coimbra, por todas as vezes que me ajudou na identificação de alguns espécimes vegetais. Aos meus colegas e amigos, pela troca de ideias, pelas explicações, pela força, apoio logístico, etc. I ÍNDICE RESUMO V ABSTRACT VI I. INTRODUÇÃO 1.1. Enquadramento 1 1.2. O clima mediterrânico e a vegetação 1 1.3. Origens da vegetação portuguesa 3 1.4. Objetivos da tese 6 1.5. Estrutura da tese 7 II. A SANTA CASA DA MISERICÓRDIA DE ARGANIL E A MATA DO HOSPITAL 2.1. Breve perspetiva histórica 8 2.2. A Mata do Hospital 8 2.2.1. Localização, limites e vias de acesso 8 2.2.2. Fatores Edafo-Climáticos-Hidrológicos 9 2.2.3. -
Garden Solutions Urban Wildlife Tocken S a Icol
Garden solutions Urban wildlife TOCKEN S A ICOL N planting GAP / / GAP No matter what size, gardens in towns and cities can welcome wildlife by tailoring garden management and including varied planting » Author: Helen Bostock, RHS Senior R H S / / S Horticultural Advisor and manager of BUCKLEY N A T IM S IM the RHS Plants for Bugs project TH A Shrubs pruned to create A Burnet moth on a good branch framework ND A Echium vulgare. provide bird nesting sites. LL GAP / JON / GAP May 2016 | The Garden 71 Urban wildlife planting Great plants for urban gardeners To plant with wildlife in mind is rewarding wherever you Trees and hedging Shrubs garden, but there are particular ✤ Acer campestre ‘Elsrijk’: moth larval ✤ Buddleja davidii Buzz Series: challenges and opportunities faced food plant, nectar and pollen for bees D compact butterfly nectar plant and LEY ppar by those who garden in towns and (7m/23ft). moth larval food plant (1.5m/5ft). S cities. Space is often at a premium, so ✤ SHE ✤ Arbutus unedo f. rubra: evergreen tree, OL Caryopteris x clandonensis plants need to be attractive and well nectar source in winter, especially for bees Car ‘Heavenly Blue’: lateseason flowers S / / S S / WENDY WE WENDY / S adapted to an urban environment. and butterflies (4m/13ft). H for bees and butterflies (1m/39in). H R R SS Dry conditions abound. Narrow O ✤ Berberis thunbergii f. atropurpurea Crab apple hedge ✤ Erysimum ‘Bowles’s Mauve’: long Buddleja davidii R planting pockets at the base of house A ‘Atropurpurea Nana’: spiky nesting site, season evergreen for honeybees and ECC walls where shallow footings and a B berries loved by winter thrushes, also bee hoverflies (75cm/30in). -
Polyploidy and Invasion of English Ivy (Hedera Spp., Araliaceae) in North American Forests
Biol Invasions DOI 10.1007/s10530-013-0446-7 ORIGINALPAPER Polyploidy and invasion of English ivy (Hedera spp., Araliaceae) in North American forests Adam F. Green • Tara S. Ramsey • Justin Ramsey Received: 16 November 2010 / Accepted: 5 March 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Polyploidy is a common feature of agricul- frequently reproductive than H. helix. In a 2-year garden tural weeds and natural area invaders. There are few experiment, tetraploid H. hibernica had substantial studies comparing related diploid and polyploid exotics, architectural differences compared to diploid H. helix, however, and it is unclear what ecological and genetic including larger (but less numerous) leaves and thicker factors favor the establishment of weedy polyploids. (but less branched) stems. Field experiments are needed This research characterizes the geographic distribution to evaluate ‘‘pre-adaptation’’ (directional ecological and phenotypic characteristics of diploid Hedera helix filtering) and other factors mediating the invasion of and tetraploid Hedera hibernica, European species that H. helix and H. hibernica. are invading North American forests. To confirm the taxonomic affinity of invasive plants, we sequenced five Keywords Cytogeography Flow cytometry non-coding cpDNA regions for 108 individuals (105 Genome duplication HorticultureÁ PhylogeographyÁ Á Á Á populations) as well as reference samples representing Triploidy all species in the genus Hedera. Because diploid H. helix and tetraploid H. hibernica are poorly distinguished by morphology and DNA sequence, we used flow cytom- Introduction etry to determine their distribution (585 individuals). More than 90 % of sampled plants had cpDNA Polyploidy is common in flowering plants and fre- sequences identical or similar to H. -
Addicions I Comentaris a La Flora Vascular Autòctona I Aŀlòctona De Les Muntanyes De Prades
Butlletí de la Institució Catalana d’Història Natural, 83: 49-58. 2019 ISSN 2013-3987 (online edition): ISSN: 1133-6889 (print edition)49 GEA, FLORA ET fauna GEA, FLORA ET FAUNA Addicions i comentaris a la Flora vascular autòctona i aŀlòctona de les Muntanyes de Prades Julià Molero* & Samuel Pyke** * Laboratori de Botànica. Departament de Biologia, Sanitat i Medi Ambient. Facultat de Farmàcia i Ciències de l’Alimentació. Universitat de Barcelona. ** Consorci del Museu de Ciències Naturals. Jardí Botànic de Barcelona. C/ Dr. Font i Quer, 2. Parc de Montjuic. 08038 Barcelona. Autor per a la correspondència: Julià Molero. A/e: [email protected] Rebut: 24.01.2019; Acceptat: 18.03.2019; Publicat: 31.03.2019 Resum Aportem 57 noves citacions de plantes vasculars per a la Flora de les Muntanyes de Prades (Catalunya meridional); 30 són tàxons au- tòctons i 27 aŀlòctons, amb un valor corològic divers. Anacyclus homogamus es cita formalment per primera vegada de Catalunya. El des- cobriment d’Orobanche castellana a prop de Prades representa una important novetat per a la flora catalana. Entre les espècies autòctones moltes són novetat per al territori d’estudi i fins i tot per al migjorn de Catalunya. Per a d’altres de rara freqüència ampliem o completem la seva distribució al territori amb noves quadrícules UTM 10 × 10 km. Ampliem notablement el grup de plantes aŀlòctones amb noves cita- cions. Moltes d’aquestes espècies aŀlòctones s’han introduït recentment, atès que la majoria no eren presents en catàlegs florístics realitzats abans de l’any 2000, ni en aportacions florístiques més actuals. -
Landscaping Without Harmful Invasive Plants
Landscaping without harmful invasive plants A guide to plants you can use in place of invasive non-natives Supported by: This guide, produced by the wild plant conservation Landscaping charity Plantlife and the Royal Horticultural Society, can help you choose plants that are without less likely to cause problems to the environment harmful should they escape from your planting area. Even the most careful land managers cannot invasive ensure that their plants do not escape and plants establish in nearby habitats (as berries and seeds may be carried away by birds or the wind), so we hope you will fi nd this helpful. A few popular landscaping plants can cause problems for you / your clients and the environment. These are known as invasive non-native plants. Although they comprise a small Under the Wildlife and Countryside minority of the 70,000 or so plant varieties available, the Act, it is an offence to plant, or cause to damage they can do is extensive and may be irreversible. grow in the wild, a number of invasive ©Trevor Renals ©Trevor non-native plants. Government also has powers to ban the sale of invasive Some invasive non-native plants might be plants. At the time of producing this straightforward for you (or your clients) to keep in booklet there were no sales bans, but check if you can tend to the planted area often, but it is worth checking on the websites An unsuspecting sheep fl ounders in a in the wider countryside, where such management river. Invasive Floating Pennywort can below to fi nd the latest legislation is not feasible, these plants can establish and cause cause water to appear as solid ground.