Subset of Alphabetical Index to Diseases and Nature of Injury for Use with Perinatal Conditions (P00-P96)

Total Page:16

File Type:pdf, Size:1020Kb

Subset of Alphabetical Index to Diseases and Nature of Injury for Use with Perinatal Conditions (P00-P96) Subset of alphabetical index to diseases and nature of injury for use with perinatal conditions (P00-P96) SUBSET OF ALPHABETICAL INDEX TO DISEASES AND NATURE OF INJURY FOR USE WITH PERINATAL CONDITIONS (P00-P96) Conditions arising in the perinatal period Conditions arising—continued - abnormal, abnormality—continued Note - Conditions arising in the perinatal - - fetus, fetal period, even though death or morbidity - - - causing disproportion occurs later, should, as far as possible, be - - - - affecting fetus or newborn P03.1 coded to chapter XVI, which takes - - forces of labor precedence over chapters containing codes - - - affecting fetus or newborn P03.6 for diseases by their anatomical site. - - labor NEC - - - affecting fetus or newborn P03.6 These exclude: - - membranes (fetal) Congenital malformations, deformations - - - affecting fetus or newborn P02.9 and chromosomal abnormalities - - - specified type NEC, affecting fetus or (Q00-Q99) newborn P02.8 Endocrine, nutritional and metabolic - - organs or tissues of maternal pelvis diseases (E00-E99) - - - in pregnancy or childbirth Injury, poisoning and certain other - - - - affecting fetus or newborn P03.8 consequences of external causes (S00-T99) - - - - causing obstructed labor Neoplasms (C00-D48) - - - - - affecting fetus or newborn P03.1 Tetanus neonatorum (A33) - - parturition - - - affecting fetus or newborn P03.9 - ablatio, ablation - - presentation (fetus) (see also Presentation, - - placentae (see also Abruptio placentae) fetal, abnormal) - - - affecting fetus or newborn P02.1 - - - before labor, affecting fetus or newborn - abnormal, abnormality, abnormalities - see P01.7 also Anomaly - - pulmonary - - amnion, amniotic fluid - - - function, newborn P28.8 - - - affecting fetus or newborn P02.9 - - - ventilation, newborn P28.8 - - anticoagulation - - umbilical cord - - - newborn (transient) P61.6 - - - affecting fetus or newborn P02.6 - - cervix NEC, maternal (acquired) - - vagina, maternal (acquired) (congenital), in (congenital), in pregnancy or childbirth pregnancy or childbirth - - - causing obstructed labor - - - causing obstructed labor - - - - affecting fetus or newborn P03.1 - - - - affecting fetus or newborn P03.1 - - chorion - - vulva and perineum, maternal (acquired) - - - affecting fetus or newborn P02.9 (congenital), in pregnancy or childbirth - - coagulation - - - causing obstructed labor - - - newborn, transient P61.6 - - - - affecting fetus or newborn P03.1 PC−1 SUBSET OF ALPHABETICAL INDEX TO DISEASES AND NATURE OF INJURY FOR USE WITH PERINATAL CONDITIONS (P00-P96) Conditions arising—continued Conditions arising—continued - ABO hemolytic disease (fetus or newborn) - abscess—continued P55.1 - - intra-abdominal (see also Abscess, - aborter, habitual or recurrent NEC Peritoneum) - - current abortion - - - newborn P78.1 - - - affecting fetus or newborn P01.8 - - intraperitoneal - abortion (complete) (incomplete) - - - newborn P78.1 - - fetus or newborn P96.4 - - kidney, maternal - - habitual or recurrent - - - complicating pregnancy - - - with current abortion - - - - affecting fetus or newborn P00.1 - - - - fetus P01.8 - - mesentery, mesenteric - - legal (induced) - - - newborn P78.1 - - - fetus P96.4 - - navel - - medical - - - newborn P38 - - - fetus P96.4 - - omentum - - spontaneous - - - newborn P78.1 - - - fetus P01.8 - - pelvis, pelvic - - - threatened - - - newborn P78.1 - - - - affecting fetus or newborn P01.8 - - peritoneum, peritoneal (perforated) - - therapeutic (ruptured) - - - fetus P96.4 - - - newborn P78.1 - - threatened (spontaneous) - - - pelvic - - - affecting fetus or newborn P01.8 - - - - male - abruptio placentae - - - - - newborn P78.1 - - affecting fetus or newborn P02.1 - - pyemic - see Septicemia - abscess (embolic) (infective) (metastatic) - - - newborn (see also Septicemia, newborn) (multiple) (perforated) (pyogenic) (septic) P36.9 - - abdomen, abdominal NEC - - retrocecal - - - newborn P78.1 - - - newborn P78.1 - - abdominopelvic - - retroperitoneal - - - newborn P78.1 - - - newborn P78.1 - - breast (acute) (chronic) (nonpuerperal) - - subdiaphragmatic - - - newborn P39.0 - - - newborn P78.1 - - diaphragm, diaphragmatic - - subhepatic - - - newborn P78.1 - - - newborn P78.1 - - epiploon, epiploic - - subphrenic - - - newborn P78.1 - - - newborn P78.1 - - extraperitoneal - - umbilicus - - - newborn P78.1 - - - newborn P38 - - viscera (multiple) NEC - - - newborn P78.1 PC−2 SUBSET OF ALPHABETICAL INDEX TO DISEASES AND NATURE OF INJURY FOR USE WITH PERINATAL CONDITIONS (P00-P96) Conditions arising—continued Conditions arising—continued - absorption - adhesions, adhesive—continued - - chemical - - lung - - - through placenta (fetus or newborn) P04.8 - - - newborn P28.8 - - - - environmental substance P04.6 - - pulmonary - - - - nutritional substance P04.5 - - - newborn P28.8 - - - - obstetric anesthetic or analgesic drug - adiponecrosis neonatorum P83.8 P04.0 - aeration lung imperfect, newborn P28.1 - - drug NEC (see also Reaction, drug) - albuminuria, albuminuric (acute) (chronic) - - - addictive (subacute) (see also Proteinuria) - - - - through placenta (fetus or newborn) - - pre-eclamptic (see also Pre-eclampsia) P04.4 - - - affecting fetus or newborn P00.0 - - - through placenta (fetus or newborn) P04.1 - alcoholism (acute) (chronic) - - - - obstetric anesthetic or analgesic - - complicating pregnancy or childbirth medication P04.0 - - - affecting fetus or newborn P04.3 - - maternal medication NEC through placenta - amnionitis (fetus or newborn) P04.1 - - affecting fetus or newborn P02.7 - accident - amputation - - birth - see Birth, injury - - any part of fetus, to facilitate delivery P03.8 - - during pregnancy, to mother - Anaerosis of newborn P28.8 - - - affecting fetus or newborn P00.5 - anasarca - acidosis (lactic) (respiratory) - - fetus or newborn P83.2 - - fetal - see Distress, fetal - android pelvis, maternal - - intrauterine - see Distress, fetal - - with disproportion (fetopelvic) - - metabolic NEC - - - affecting fetus or newborn P03.1 - - - late, of newborn P74.0 - anemia - - - newborn - see Distress, fetal - - congenital P61.4 - acrocyanosis - - - due to isoimmunization NEC P55.9 - - newborn P28.2 - - - following fetal blood loss P61.3 - action, heart - - due to - - disorder - - - fetal blood loss P61.3 - - - newborn P29.1 - - - prematurity P61.2 - - irregular - - erythroblastic - - - newborn P29.1 - - - fetus or newborn (see also Disease, - addiction, maternal (see also Dependence) hemolytic) P55.9 - - alcohol, alcoholic (ethyl) (methyl) (wood) - - fetus or newborn P61.4 - - - complicating pregnancy or childbirth - - - due to - - - - affecting fetus or newborn P04.3 - - - - ABO (antibodies) (isoimmunization) - adhesions, adhesive (postinfective) (maternal/fetal incompatibility) P55.1 - - amnion to fetus - - - - Rh (antibodies) (isoimmunization) - - - affecting fetus or newborn P02.8 (maternal/fetal incompatibility) P55.0 PC−3 SUBSET OF ALPHABETICAL INDEX TO DISEASES AND NATURE OF INJURY FOR USE WITH PERINATAL CONDITIONS (P00-P96) Conditions arising—continued Conditions arising—continued - anemia—continued - anteversion - - fetus or newborn—continued - - uterus, uterine, maternal (cervix) - - - following fetal blood loss P61.3 (postinfectional) (postpartal, old) - - hemolytic - - - in pregnancy or childbirth - - - acute - - - - affecting fetus or newborn P03.8 - - - - fetus or newborn (see also Disease, - - - - causing obstructed labor hemolytic) P55.9 - - - - - affecting fetus or newborn P03.1 - - maternal, of or complicating pregnancy - anthropoid pelvis, maternal - - - affecting fetus or newborn P00.8 - - with disproportion (fetopelvic) - - newborn P61.4 - - - affecting fetus or newborn P03.1 - - - posthemorrhagic (fetal) P61.3 - antibodies (blood group) (see also - - of prematurity P61.2 Incompatibility) - - posthemorrhagic (chronic) - - anti-D - - - newborn P61.3 - - - fetus or newborn P55.0 - anhydramnios - anuria - - affecting fetus or newborn P01.2 - - newborn P96.0 - anomaly, anomalous (congenital) - apgar (score) (unspecified type) - - low NEC, with asphyxia P21.9 - - cervix, maternal - - 0-3 at 1 minute, with asphyxia P21.0 - - - in pregnancy or childbirth NEC - - 4-7 at 1 minute, with asphyxia P21.1 - - - - affecting fetus or newborn P03.8 - apnea, apneic (spells) - - - - causing obstructed labor - - newborn NEC P28.4 - - - - - affecting fetus or newborn P03.1 - - - sleep (primary) P28.3 - - uterus, maternal - arrest, arrested - - - in pregnancy or childbirth - - active phase of labor - - - - affecting fetus or newborn P03.8 - - - affecting fetus or newborn P03.6 - - - - causing obstructed labor - - cardiac - - - - - affecting fetus or newborn P03.1 - - - newborn P29.1 - anoxemia (see also Anoxia) - - coronary - - newborn (see also Asphyxia, newborn) - - - infant P29.1 P21.9 - - deep transverse - anoxia (see also Hypoxia) - - - affecting fetus or newborn P03.1 - - cerebral - - development or growth - - - newborn (see also Asphyxia, newborn) - - - fetus P05.9 P21.9 - - respiratory - - newborn (see also Asphyxia, newborn) - - - newborn P28.5 P21.9 PC−4 SUBSET OF ALPHABETICAL INDEX TO DISEASES AND NATURE OF INJURY FOR USE WITH PERINATAL CONDITIONS (P00-P96) Conditions arising—continued Conditions arising—continued - arrhythmia (cardiac) (ventricular) (see - aspiration—continued also Dysrhythmia) - - meconium (newborn) P24.0 - - extrasystolic - - milk (newborn) P24.3 - - - newborn P29.1 - - mucus - - newborn P29.1 - - - newborn P24.1 - - sinus - - newborn (massive) (syndrome) P24.9 - - - newborn
Recommended publications
  • Management and Investigation of Neonatal Encephalopathy: 2017 Update Kathryn Martinello,1 Anthony R Hart,2 Sufin Yap,3 Subhabrata Mitra,1 Nicola J Robertson1
    Review Arch Dis Child Fetal Neonatal Ed: first published as 10.1136/archdischild-2015-309639 on 6 April 2017. Downloaded from Management and investigation of neonatal encephalopathy: 2017 update Kathryn Martinello,1 Anthony R Hart,2 Sufin Yap,3 Subhabrata Mitra,1 Nicola J Robertson1 1Department of Neonatology, ABSTRACT definite aetiological diagnosis is known, and Institute for Women’s Health, This review discusses an approach to determining the hypoxic-ischaemic encephalopathy (HIE) where University College London, UK 2 cause of neonatal encephalopathy, as well as current clear diagnosis of hypoxia-ischaemia is known to Department of Neonatal and ’ Paediatric Neurology, Sheffield evidence on resuscitation and subsequent management have led to the neonate s clinical state. Children’s Hospital NHS of hypoxic-ischaemic encephalopathy (HIE). Foundation Trust, Sheffield, UK Encephalopathy in neonates can be due to varied 3 DETERMINING THE AETIOLOGY OF NE Department of Inherited aetiologies in addition to hypoxic-ischaemia. A Metabolic Diseases, Sheffield The initial stages of managing NE will be the same Children’s Hospital NHS combination of careful history, examination and the for most babies, with good resuscitation and sup- Foundation Trust, Sheffield, UK judicious use of investigations can help determine the portive management. However, as the picture cause. Over the last 7 years, infants with moderate to evolves and investigations return, clinicians should fi Correspondence to severe HIE have bene ted from the introduction of consider the aetiology of NE as this could lead to Professor Nicola J Robertson, routine therapeutic hypothermia; the number needed to specific treatments, aid with prognosis and recur- Institute for Women’s Health, treat for an additional beneficial outcome is 7 (95% CI University College London, 74 rence risk counselling, and assist with the evalu- Huntley Street, London WC1E 5 to 10).
    [Show full text]
  • Various Outcomes of Idiopathic Grade IV Intraventricular Haemorrhage in Term Newborns at Two Years of Age. Das S1, Bhattacharya M2, Chatterjee K3, Sarkar N4, Aich B5
    Bangladesh Journal of Medical Science Vol. 17 No. 02 April’18 Case report: Various outcomes of Idiopathic Grade IV Intraventricular Haemorrhage in term newborns at two years of age. Das S1, Bhattacharya M2, Chatterjee K3, Sarkar N4, Aich B5 Bangladesh Journal of Medical Science Vol. 17 No. 02 April’18. Page : 316-318 DOI: http://dx.doi.org/10.3329/bjms.v17i2.35893 Introduction: duration of NICU stay was 15 days. Intraventricular Haemorrhage (IVH) generally Case1 (corresponds to Figure1) - At 2 years of age, occurs in infants <32 weeks and/or <1500 grams. he was developing right sided spastic hemiparetic Incidence of IVH in term neonates is 3.5-5% 1,2 . cerebral palsy. Right sided limbs exhibited 50% of IVH in term neonates is primarily caused by hypertonia, brisk deep tendon reflexes, ankle clonus trauma and asphyxia; a minority of haemorrhages and persistence of cortical thumb. The child showed is caused by extension of bleed from Subdural, early hand preference, dwarfing and dyspraxia of Subarachnoid and Intraparenchymal haemorrhage affected limbs. Electroencephalogram (EEG), Visual or caused by vascular lesions, coagulopathies or Evoked Potential (VEP), Brainstem Auditory Evoked tumours. 25% of cases have no significant risk Response (BAER) and Fundoscopy were normal factors. Most of the germinal matrix has regressed at 2 years of age. Developmental assesment was by term, so most haemorrhages (35%) arise from the done by Developmental Assesment Scale For Indian posterior tufts at the glomus in choroid plexus, 24% Infants (DASII) which is based on Bayley Scale of from Thalamus, 17% from residual Germinal Matrix Infant Development (BSID) II norms.
    [Show full text]
  • Mid-Trimester Preterm Premature Rupture of Membranes (PPROM): Etiology, Diagnosis, Classification, International Recommendations of Treatment Options and Outcome
    J. Perinat. Med. 2018; 46(5): 465–488 Review article Open Access Michael Tchirikov*, Natalia Schlabritz-Loutsevitch, James Maher, Jörg Buchmann, Yuri Naberezhnev, Andreas S. Winarno and Gregor Seliger Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome DOI 10.1515/jpm-2017-0027 neonates delivered without antecedent PPROM. The “high Received January 23, 2017. Accepted May 19, 2017. Previously pub- PPROM” syndrome is defined as a defect of the chorio- lished online July 15, 2017. amniotic membranes, which is not located over the inter- nal cervical os. It may be associated with either a normal Abstract: Mid-trimester preterm premature rupture of mem- or reduced amount of amniotic fluid. It may explain why branes (PPROM), defined as rupture of fetal membranes sensitive biochemical tests such as the Amniosure (PAMG-1) prior to 28 weeks of gestation, complicates approximately or IGFBP-1/alpha fetoprotein test can have a positive result 0.4%–0.7% of all pregnancies. This condition is associ- without other signs of overt ROM such as fluid leakage with ated with a very high neonatal mortality rate as well as an Valsalva. The membrane defect following fetoscopy also increased risk of long- and short-term severe neonatal mor- fulfils the criteria for “high PPROM” syndrome. In some bidity. The causes of the mid-trimester PPROM are multi- cases, the rupture of only one membrane – either the cho- factorial. Altered membrane morphology including marked rionic or amniotic membrane, resulting in “pre-PPROM” swelling and disruption of the collagen network which is could precede “classic PPROM” or “high PPROM”.
    [Show full text]
  • Thrombosis in the Antiphospholipid Syndrome
    Thrombosis in the antiphospholipid syndrome Reyhan D‹Z KÜÇÜKKAYA Division of Hematology, Department of Internal Medicine, Istanbul University, Istanbul School of Medicine, Istanbul, TURKEY Turk J Hematol 2006;23(1): 5-14 INTRODUCTION her autoimmune disorders, especially with systemic lupus erythematosus (SLE)[8]. Besi- Antiphospholipid antibodies (aPLA) are des these autoimmune conditions, aPLA may heterogenous antibodies directed against be present in healthy individuals, in patients phospholipid–protein complexes. Antiphosp- with hematologic and solid malignancies, in holipid syndrome (APS) is diagnosed when ar- patients with certain infections [syphilis, lep- terial and/or venous thrombosis or recurrent rosy, human immunodeficiency virus (HIV), fetal loss occurs in a patient in whom scre- cytomegalovirus (CMV), Epstein-Barr virus ening for aPLA are positive. Because both (EBV), etc.], and in patients being treated thrombosis and fetal loss are common in the with some drugs (phenothiazines, procaina- population, persistent positivity of aPLA is mide, phenytoin etc.). Those antibodies are important. This syndrome is predominant in defined as “alloimmune aPLA”, and they are females (female to male ratio is 5 to 1), espe- generally transient and not associated with cially during the childbearing years[1-7]. the clinical findings of APS[9]. A minority of As in the other autoimmune disorders, APS patients may acutely present with mul- aPLA and APS may accompany other autoim- tiple simultaneous vascular occlusions affec- mune diseases and certain situations. APS is ting small vessels predominantly, and this is referred to as “primary” when it occurs alone termed as “catastrophic APS (CAPS)”[1-7]. or “secondary” when it is associated with ot- Milestones in the Antiphospholipid Syndrome History Antifosfolipid sendromu The first antiphospholipid antibodies we- Anahtar Kelimeler: Antifosfolipid sendromu, Antifosfolipid re discovered by Wasserman et al.[10] in antikorlar, Tromboz.
    [Show full text]
  • Hyperbilirubinemia and Kernicterus Jesus Peinado PGY2 Merle Ipson MD March 2009 Hyperbilirubinemia
    Hyperbilirubinemia and Kernicterus Jesus Peinado PGY2 Merle Ipson MD March 2009 Hyperbilirubinemia Most common clinical condition requiring evaluation and treatment in the NB Most common cause of readmission in the 1 st week Generally a benign transitional phenomenon May pose a direct threat of brain damage May evolve into kernicterus Kernicterus 1. Choreoathetoid cerebral palsy 2. High-frequency central neural hearing loss 3. Palsy of vertical gaze 4. Dental enamel hypoplasia (result of bilirubin-induced cell toxicity) Kernicterus Originally described in NB with Rh hemolytic disease Recently reported in healthy term and late preterm Reported in breast-fed infants w/out hemolysis Most prevalent risk factor is late preterm Late Preterm Infant Relatively immature in their capacity to handle unconjugated bilirubin Hyperbilirubinemia is more prevalent, pronounced and protracted Eightfold increased risk of developing TSB > 20 mg/dl (5.2%) compared to term (0.7%) Pathobiology Increased bilirubin load in the hepatocyte Decreased erythrocyte survival Increased erythrocyte volume Increased enterohepatic circulation Decreased hepatic uptake from plasma Defective bilirubin conjugation Bilirubin Metabolism Bilirubin Metabolism Bilirubin Metabolism How bilirubin Damages the Brain Determinants of neuronal injury by bilirubin 1. Concentration of unconjugated bilirubin 2. Free bilirubin 3. Concentration of serum albumin 4. Ability to bind UCB 5. Concentration of hydrogen ion 6. Neuronal susceptibility Intracellular Calcium Homeostasis
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]
  • Subset of Alphabetical Index to Diseases and Nature of Injury for Use with Perinatal Conditions (P00-P96)
    Subset of alphabetical index to diseases and nature of injury for use with perinatal conditions (P00-P96) SUBSET OF ALPHABETICAL INDEX TO DISEASES AND NATURE OF INJURY FOR USE WITH PERINATAL CONDITIONS (P00-P96) Conditions arising in the perinatal period Conditions arising—continued - abnormal, abnormality—continued Note - Conditions arising in the perinatal - - fetus, fetal period, even though death or morbidity - - - causing disproportion occurs later, should, as far as possible, be - - - - affecting fetus or newborn P03.1 coded to chapter XVI, which takes - - forces of labor precedence over chapters containing codes - - - affecting fetus or newborn P03.6 for diseases by their anatomical site. - - labor NEC - - - affecting fetus or newborn P03.6 These exclude: - - membranes (fetal) Congenital malformations, deformations - - - affecting fetus or newborn P02.9 and chromosomal abnormalities - - - specified type NEC, affecting fetus or (Q00-Q99) newborn P02.8 Endocrine, nutritional and metabolic - - organs or tissues of maternal pelvis diseases (E00-E99) - - - in pregnancy or childbirth Injury, poisoning and certain other - - - - affecting fetus or newborn P03.8 consequences of external causes (S00-T99) - - - - causing obstructed labor Neoplasms (C00-D48) - - - - - affecting fetus or newborn P03.1 Tetanus neonatorum (A33) - - parturition - - - affecting fetus or newborn P03.9 - ablatio, ablation - - presentation (fetus) (see also Presentation, - - placentae (see also Abruptio placentae) fetal, abnormal) - - - affecting fetus or newborn
    [Show full text]
  • Mortality Perinatal Subset, 2013
    ICD-10 Mortality Perinatal Subset (2013) Subset of alphabetical index to diseases and nature of injury for use with perinatal conditions (P00-P96) Conditions arising in the perinatal period Note - Conditions arising in the perinatal period, even though death or morbidity occurs later, should, as far as possible, be coded to chapter XVI, which takes precedence over chapters containing codes for diseases by their anatomical site. These exclude: Congenital malformations, deformations and chromosomal abnormalities (Q00-Q99) Endocrine, nutritional and metabolic diseases (E00-E99) Injury, poisoning and certain other consequences of external causes (S00-T99) Neoplasms (C00-D48) Tetanus neonatorum (A33 2a) A -ablatio, ablation - - placentae (see alsoAbruptio placentae) - - - affecting fetus or newborn P02.1 2a -abnormal, abnormality, abnormalities - see also Anomaly - - alphafetoprotein - - - maternal, affecting fetus or newborn P00.8 - - amnion, amniotic fluid - - - affecting fetus or newborn P02.9 - - anticoagulation - - - newborn (transient) P61.6 - - cervix NEC, maternal (acquired) (congenital), in pregnancy or childbirth - - - causing obstructed labor - - - - affecting fetus or newborn P03.1 - - chorion - - - affecting fetus or newborn P02.9 - - coagulation - - - newborn, transient P61.6 - - fetus, fetal 1 ICD-10 Mortality Perinatal Subset (2013) - - - causing disproportion - - - - affecting fetus or newborn P03.1 - - forces of labor - - - affecting fetus or newborn P03.6 - - labor NEC - - - affecting fetus or newborn P03.6 - - membranes
    [Show full text]
  • Motor Deficits Are Triggered by Reperfusion-Reoxygenation Injury As Diagnosed by MRI and by a Mechanism Involving Oxidants
    5500 • The Journal of Neuroscience, April 18, 2012 • 32(16):5500–5509 Neurobiology of Disease Motor Deficits Are Triggered by Reperfusion-Reoxygenation Injury as Diagnosed by MRI and by a Mechanism Involving Oxidants Alexander Drobyshevsky,1 Kehuan Luo,1 Matthew Derrick,1 Lei Yu,1 Hongyan Du,2 P. V. Prasad,3 Jeannette Vasquez-Vivar,4 Ines Batinic-Haberle,5 and Sidhartha Tan1 1Department of Pediatrics, 2Center on Outcomes, Research and Education, and 3Radiology, NorthShore University Healthcare Research Institute, Evanston, Illinois 60201, 4Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and 5Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 The early antecedents of cerebral palsy (CP) are unknown but are suspected to be due to hypoxia-ischemia (H-I). In our rabbit model of CP, the MRI biomarker, apparent diffusion coefficient (ADC) on diffusion-weighted imaging, predicted which fetuses will develop postnatalhypertonia.SurvivingH-Ifetusesexperiencereperfusion-reoxygenationbutasubpopulationmanifestedacontinueddeclineof ADC during early reperfusion-reoxygenation, which possibly represented greater brain injury (RepReOx). We hypothesized that oxida- tive stress in reperfusion-reoxygenation is a critical trigger for postnatal hypertonia. We investigated whether RepReOx predicted postnatal neurobehavior, indicated oxidative stress, and whether targeting antioxidants at RepReOx ameliorated motor deficits, which included testing of a new superoxide dismutase mimic (MnTnHex-2-PyP). Rabbit dams, 79% gestation (E25), were subjected to 40 min uterine ischemia. Fetal brain ADC was followed during H-I, immediate reperfusion-reoxygenation, and 4–72 h after H-I. Endpoints were postnatal neurological outcome at E32, ADC at end of H-I, ADC nadir during H-I and reperfusion-reoxygenation, and area under ADC curve during the first 20 min of reperfusion-reoxygenation.
    [Show full text]
  • Lupus Anticoagulant‑Hypoprothrombinemia Syndrome and Immunoglobulin‑A Vasculitis: a Report of Japanese Sibling Cases and Review of the Literature
    Rheumatology International (2019) 39:1811–1819 Rheumatology https://doi.org/10.1007/s00296-019-04404-7 INTERNATIONAL CASES WITH A MESSAGE Lupus anticoagulant‑hypoprothrombinemia syndrome and immunoglobulin‑A vasculitis: a report of Japanese sibling cases and review of the literature Kaori Fujiwara1 · Junya Shimizu3 · Hirokazu Tsukahara1 · Akira Shimada2 Received: 6 March 2019 / Accepted: 29 July 2019 / Published online: 7 August 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Lupus anticoagulant-hypoprothrombinemia syndrome (LAHPS) is a rare bleeding disorder caused by antiprothrombin anti- bodies. LAHPS is associated with systemic lupus erythematosus (SLE) or infections. We describe two Japanese brothers with immunoglobulin-A vasculitis (IgAV) who met the diagnostic criteria of LAHPS. They presented with palpable purpura and abdominal pain, and had a prolonged activated partial thromboplastin time (APTT) and prothrombin defciency with the presence of lupus anticoagulant. Pediatric LAHPS was reviewed in abstracts from the Japan Medical Abstracts Society that were written in Japanese and PubMed or Web of Science-listed articles in English between 1996 and 2019. Including our cases, pediatric LAHPS has been reported in 40 Japanese and 46 non-Japanese patients. We summarized the clinical and laboratory characteristics of all 86 cases, and found only one Japanese LAHPS case with IgAV, except for our cases. Of the 86 cases, most were associated with infections followed by SLE. The presence of SLE, older age, lower prothrombin levels, severe bleeding symptoms, and positivity of immunoglobulin G anticardiolipin antibodies and anticardiolipin/β2-glycoprotein I antibodies and/or β2-glycoprotein I-dependent anticardiolipin antibodies had higher odds of requiring treatment.
    [Show full text]
  • Propylthiouracil Tablets, Usp
    PROPYLTHIOURACIL TABLETS, USP WARNING Severe liver injury and acute liver failure, in some cases fatal, have been reported in patients treated with propylthiouracil. These reports of hepatic reactions include cases requiring liver transplantation in adult and pediatric patients. Propylthiouracil should be reserved for patients who cannot tolerate methimazole and in whom radioactive iodine therapy or surgery are not appropriate treatments for the management of hyperthyroidism. Propylthiouracil may be the treatment of choice when an antithyroid drug is indicated during or just prior to the first trimester of pregnancy (see Warnings and Precautions). DESCRIPTION Propylthiouracil is one of the thiocarbamide compounds. It is a white, crystalline substance that has a bitter taste and is very slightly soluble in water. Propylthiouracil is an antithyroid drug administered orally. The structural formula is: Each tablet contains propylthiouracil 50 mg and the following inactive ingredients: corn starch, docusate sodium, magnesium stearate, microcrystalline cellulose, pregelatinized starch, sodium benzoate, and sodium starch glycolate. CLINICAL PHARMACOLOGY Propylthiouracil inhibits the synthesis of thyroid hormones and thus is effective in the treatment of hyperthyroidism. The drug does not inactivate existing thyroxine and triiodothyronine that are stored in the thyroid or circulating in the blood, nor does it interfere with the effectiveness of thyroid hormones given by mouth or by injection. Propylthiouracil inhibits the conversion of thyroxine
    [Show full text]
  • 6/11/2019 1 “Lab Called… Your CBC Clotted”
    6/11/2019 Neonatal Lab Interpretation Tanya Hatfield, MSN, RNC - NIC UCSF Benioff Children’s Outreach Services “Lab called… your CBC clotted” 2 Objectives ▪ Interpret lab values ▪ Discuss jaundice of the newborn ▪ Understand specific hematologic problems 3 1 6/11/2019 CBC - Hematopoiesis 4 Erythrocytes - RBCs ▪ Main protein is hemoglobin ( Hgb ) ▪ RBC function is to protect Hgb ▪ Hgb function is oxygen/CO2 transport Reticulocytes ▪ Inversely proportional to GA at birth ▪ Falls quickly to less than 2% by 7 days ▪ Elevated early Retic Ct may indicate bleeding, hemolysis or chronic blood loss 5 Kenner, C. (2014). Comprehensive neonatal nursing care (Fifth ed., pp. 334 - 338) Components of CBC ▪ Main protein is hemoglobin (Hgb) ▪ RBC function is to protect Hgb ▪ Hgb function is oxygen/CO2 transport Reticulocytes ▪ Inversely proportional to GA at birth ▪ Falls quickly to less than 2% by 7 days ▪ Elevated early Retic Ct may indicate bleeding, hemolysis or chronic blood loss 6 Kenner, C. (2014). Comprehensive neonatal nursing care (Fifth ed., pp. 334 - 338) 2 6/11/2019 RBC Indices ▪ Mean corpuscular volume (MCV): size and volume ▪ Mean corpuscular hemoglobin (MCH): average amount (weight) of hemoglobin ▪ Mean corpuscular hemoglobin concentration (MCHC): average concentration ▪ Nucleated RBC: circulating pre - reticulocyte 7 Kenner, C. (2014). Comprehensive neonatal nursing care (Fifth ed., pp. 334 - 338) Anemia ▪ Differential • ↓ Erythrocyte production ‒ infection, nutritional deficiencies, leukemia, bone marrow failure, anemia of prematurity
    [Show full text]