Fabrication of Low Cost 3-Axis Cnc Router

Total Page:16

File Type:pdf, Size:1020Kb

Fabrication of Low Cost 3-Axis Cnc Router International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 3 Issue 6ǁ June 2014 ǁ PP.01-10 Fabrication of Low Cost 3-Axis Cnc Router Dr.B.Jayachandraiah1, O.Vamsi Krishna2, P.Abdullah Khan3, R.Ananda Reddy4 Prof of M.E &Vice-Principal1, B.Tech, Mechatronics Engineering2, B.Tech, Mechatronics Engineering3, B.Tech, Mechatronics Engineering4 Department of Mechanical Engineering SriKalahateeswara Institute of Technology, Srikalahasti,A.P, India ABSTRACT : Increase in the rapid growth of Technology significantly increased the usage and utilization of CNC systems in industries but at considerable expensive. The idea on fabrication of low cost CNC Router came forward to reduce the cost and complexity in CNC systems. This paper discusses the development of a low cost CNC router which is capable of 3-axis simultaneous interpolated operation. The lower cost is achieved by incorporating the features of a standard PC interface with micro-controller based CNC system in an Arduino based embedded system. The system also features an offline G-Code parser and then interpreted on the micro- controller from a USB. Improved procedures are employed in the system to reduce the computational overheads in controlling a 3-axis CNC machine, while avoiding any loss in overall system performance. I. INTRODUCTION: In modern CNC systems, end-to-end component design is highly automated using computer-aided design (CAD) and computer-aided manufacturing (CAM) programs. The programs produce a computer file that is interpreted to extract the commands needed to operate a particular machine via a post processor, and then loaded into the CNC machines for production. Since any particular component might require the use of a number of different tools – drills, saws, etc., modern machines often combine multiple tools into a single "cell". In other installations, a number of different machines are used with an external controller and human or robotic operators that move the component from machine to machine. In either case, the series of steps needed to produce any part is highly automated and produces a part that closely matches the original CAD design. With the on-going development of technology and economy, new industrial requirements such as high precision, good quality, high production rates and low production costs are increasingly demanded. Most of such requirements, including dimensional accuracy, conformance to tolerances of finished products and production rate can be met with better machine tools. With the help of CNC technology, machine tools today are not limited to human capabilities and are able to make ultra-precision products down to nano scales in a much faster manner. The traditional design philosophy of machine tools is multifunctionality and highest precision possible. However, with the dramatic increase of industry varieties and the growing demand of miniature products, these general purpose machine tools are not efficient, either in terms of machine time or cost, in manufacturing products with special sizes and precision requirements.There are several advantages of using small machines to produce small sized objects. With a smaller machine size, space is saved. The energy required to operate the machine is reduced as well. It now requires less material and components to make the machine, hence bringing down the cost greatly. The weight of moving component also comes down so that during operation, the vibration and noise, as well as pollution to the environment, are markedly reduced. As the machine becomes denser and lighter, it becomes more portable. The layout of the manufacturing plant can be more flexible. The productivity and manufacturing speed also increases due to possible faster operation. II. LITERATURE REVIEW: several authors have studied the development of such machines on a smaller, low-cost scale. Yung C. Shin, Henry Chin, Michael J. Brink, Studied the Characterization of CNC machining centers,‖ Journal ofManufacturing Systems,1991.Heisel. M Kumar, V Puttige,worked on low cost automation for CNC machining center and publishe paper at IJMET, Vol. 3.I. Pahole, L. Rataj, M. Ficko, S. Klancnik, S.Brezovnik, M. Brezocnik, and J. Balic,did research on the "Construction and evaluation of low-cost tableCNC milling machine",2009. V.K. Pabolu and K.N.H. Srinivas,made a design of Low Cost CNC and published a journal on "Design and implementation of a three dimensional CNC machine",2010.T. Andrei and I. Nae, did the workout on "Practical applications performed by a stepper motor CNC router",2010. P.A. Sherring da Rocha Jr., R.D.S. Souza, and M.Emilia de Lima Tostes, "Prototype CNC machinedesign",2012. X. Xu, Y. Li, J. Sun, and S. Wang, "Research and development of open CNC system based on PC and motion controller",2012.. A LOW- COST BUILD-YOUR-OWN THREE AXIS CNC MILL PROTOTYPE, www.ijesi.org 1 | Page Fabrication Of Low Cost 3-Axis… Sundar Pandian and 2S. Raj Pandian 2013. Open source GCODE interpreter code GRBL controller Firmware Code By Ben is the inspiration for working on the low cost production system. The GRBL team implemented user friendly innovation on interpreting the CNC GCODEs using arduino based microcontroller system. III. OBJECTIVE OFPAPER: The idea behind fabrication of low cost CNC router is to full fill the demand of CNC routers from small scale to large scale industries with optimized low cost. A major new development in computer technology is the availability of low-cost open source hardware, such as the Arduino microcontroller. An advantage of open source hardware is that a wide variety of ready-to-use software is available for them on the Web, therefore the prototyping and development times are drastically reduced. Moreover, a wide range of low-cost interfaces, sensors, and accessories such as Arduino shields are also available.. However, for the development of low-cost educational models of CNC machines, such tools may be quite adequate from the viewpoint of machine control. In this paper, the development of a prototype 3-axis CNC Router using Arduino-based control system is presented with following specifications: • Low cost • Easily operable • Easy interface • Flexible • Low power consumption IV. EXPERIMENTAL SETUP: Machine structure is the “backbone” of the machine tool. It integrates all machine components into a complete system. The machine structure is crucial to the performance of the machine tools since it is directly affecting the static and dynamic stiffness, as well as the damping response of the machine tool. A carefully designed structure can provide high stiffness, result in higher operation bandwidth and more precise operation. A small-scale machine tool generally requires even higher stiffness than the ordinary large-scale machine tool since it is usually operated at higher speeds. Granty style closed frame structure is chosen for our experimental setup which provides a strong ridged structure loop, symmetry, and good thermal stability, which provides better stiffness than the open frame structures generally used for easy access to the work zone, with the same order-of-magnitude in size. Closed frame structures typically are used in precision machines such. Therefore it is much easier to move the tool with respect to a fixed work piece. This structure consumes less material, hence is very less expensive to build.Most machines designed for cutting flat steel plate use a gantry design because it is an easy way to move cutting tools in an Z-X coordinate system. The rail system that the gantry rides on forms one axis, usually the Z-axis. The gantry bridge itself forms the other axis, usually the Y-axis. By motorizing each axis and coordinating the motion of the two axes simultaneously, you can move a torch in any pattern necessary to cut shapes out of steel plate. Thus, a gantry design lends itself to CNC shape cutting, which primarily uses an Z-X coordinate system for programming parts.A gantry cutting machine will ride on some sort of rail system in the Z-axis, either floor mounted, pedestal mounted, or sometimes integrated onto the side of a table. The rails are designed to provide accurate motion for the machine, and are strong enough to support the weight of the entire machine and all of the equipment mounted to it. Depending on the size of the machine, these rails can be as simple as a small strip of metal, or as complex as a recirculating ball bearing linear rail system, or as large as a railroad train rail.A gantry cutting machine will also have some sort of guiding system in the X-axis too, which is mounted to the bridge structure itself. The X-axis guiding system will usually be smaller than the Z-axis rails, because they only have to carry the weight of a small carriage and cutting tool, not the entire gantry. Gantry machines may have one tool carriage or many tool carriages. Some times the tool carriages will each have their own drive motor that moves them in the X-axis, and some times there will be only one motor that drives the X-axis, and all of the tool carriages will be connected together by a steel band, tie rod, wire rope, or similar mechanical device. www.ijesi.org 2 | Page Fabrication Of Low Cost 3-Axis… 4.1 STRUCTURAL DESIGN – CAD MODEL Fig.1., 3D WIREFRAME MODEL Fig.2.,3D SOLID MODEL 4.2 DESCRIPTION OF COMPONENTS: 4.2.1 BALL/ LEAD SCREWS A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as being able to apply or withstand high thrust loads, they can do so with minimum internal friction.
Recommended publications
  • M2M Growth Necessitates a New Approach to Network Planning and Optimisation
    Machina Research White Paper M2M growth necessitates a new approach to network planning and optimisation May 2015 2 1 Executive Summary Growing numbers of machine-to-machine (M2M) connected devices, as part of the emergence of an Internet of Things, will create challenges for Mobile Network Operators. The absolute volume of devices and mobile network traffic will be ostensibly quite manageable, with M2M accounting for just 19% of connections and 4% of traffic. However, traditional handsets, tablets and mobile broadband connections are relatively homogenous in their demands, in terms of usage, geographical location, criticality, security and numerous other criteria. M2M devices are much more diverse. As a result, M2M devices have the potential to place completely different demands on the network. This White Paper provides a snapshot of the growth of M2M/IoT in terms of numbers of devices and traffic, examines the ways in which M2M can put different and unexpected strains on the network, with a particular focus on connected cars, and finally offers some perspectives on how this might necessitate some changes in network engineering and operations. The key findings are as followings: The growth in M2M devices will be substantial, with cellular connections increasing from 250 million to 2.3 billion in the next decade. Traffic will grow even more quickly from 200 petabytes in 2014 to 3.2 exabytes in 2024. However, M2M will account for only 4% of all cellular traffic in 2024. M2M devices do not behave in the same way as handsets, tablets and other more established mobile devices. This may result in less manageable traffic patterns at particular times and in particular locations.
    [Show full text]
  • “Smart” Stormwater Management
    “Smart” Stormwater Management Structural Practices: The Futuristic Solutions Debabrata Sahoo, PhD, PE, PH Senior Engineer, Woolpert Inc, Columbia, SC North Carolina-American Public Works Association, October 21, 2019 Introduction Current Practices History Future Technologies Case Studies Agenda • Introduction • 5 Ws of SMART Stormwater Management • Current Practices in Stormwater/Flood Control and Mitigation • Issues with water quantity and quality • Stormwater/Flooding: Quality and Quantity • Issues with Stormwater/Flooding • Historical Flooding in South Carolina/North Carolina • Economic Impacts • Technologies to Integrate water, data, sensing and control • Internet of Waters, IoT, Sensors, Wireless Platforms, Machine to Machine Communication, Artificial Intelligence, Machine Learning, Deep Learning, Real-Time Systems, Cloud Computing, Big Data and Analytics • Application of Future Technologies in Stormwater/Flood Mitigation • Smart Stormwater Systems • Flash Flood Forecasting • Storm Sewer Controls • Big Data Analytics • Challenges and Opportunities Introduction Current Practices History Future Technologies Case Studies Current Practices in Stormwater Control and Mitigation • Use of design storms • Design to lower peak flows • Design to empty within 72 Hours • Store runoff for a minimum of 24 hours to get the water quality benefits Introduction Current Practices History Future Technologies Case Studies Current Practices in Stormwater Control and Mitigation Introduction Current Practices History Future Technologies Case Studies Stormwater/Flooding:
    [Show full text]
  • A DASH7-Based Power Metering System
    A DASH7-based Power Metering System Oktay Cetinkaya Ozgur B. Akan Next-generation and Wireless Communications Laboratory Department of Electrical and Electronics Engineering Koc University, Istanbul, Turkey Email: fokcetinkaya13, [email protected] Abstract—Considering the inability of the existing energy non-embedded structure. When considering the cost of HEMS, resources to satisfy the current needs, the right and efficient use power meters can be defined as cheap and cost effective of the energy has become compulsory. To make energy sustain- products, undoubtedly. ability permanent, management and planning activities should be carried out by arranging the working hours and decreasing There are several wireless communication protocols in liter- the energy wasting. For all these, power metering, managing ature to actualize the remote control of plugged gadgets. The and controlling systems or plugs has been proposed in recent communication between ‘master and slave’ or equivalently efforts. Starting from this point, a new DASH7-based Smart Plug ‘user and device’ is realized over any of these wireless (D7SP) is designed and implemented to achieve a better structure communication protocols based modules. 2.4 GHz frequency compared to ZigBee equipped models and reduce the drawbacks of current applications. DASH7 technology reaches nearly 6 times is frequently preferred for this goal and ZigBee can be referred farther distances in comparison with 2.4 GHz based protocols and as the most popular member of this band. With a brief provides multi-year battery life as a result of using limited energy definition, ZigBee is a low cost and high reliable technology during transmission. Performing in the 433 MHz band prevents based on IEEE 802.15.4 [1].
    [Show full text]
  • Openscad User Manual (PDF)
    OpenSCAD User Manual Contents 1 Introduction 1.1 Additional Resources 1.2 History 2 The OpenSCAD User Manual 3 The OpenSCAD Language Reference 4 Work in progress 5 Contents 6 Chapter 1 -- First Steps 6.1 Compiling and rendering our first model 6.2 See also 6.3 See also 6.3.1 There is no semicolon following the translate command 6.3.2 See Also 6.3.3 See Also 6.4 CGAL surfaces 6.5 CGAL grid only 6.6 The OpenCSG view 6.7 The Thrown Together View 6.8 See also 6.9 References 7 Chapter 2 -- The OpenSCAD User Interface 7.1 User Interface 7.1.1 Viewing area 7.1.2 Console window 7.1.3 Text editor 7.2 Interactive modification of the numerical value 7.3 View navigation 7.4 View setup 7.4.1 Render modes 7.4.1.1 OpenCSG (F9) 7.4.1.1.1 Implementation Details 7.4.1.2 CGAL (Surfaces and Grid, F10 and F11) 7.4.1.2.1 Implementation Details 7.4.2 View options 7.4.2.1 Show Edges (Ctrl+1) 7.4.2.2 Show Axes (Ctrl+2) 7.4.2.3 Show Crosshairs (Ctrl+3) 7.4.3 Animation 7.4.4 View alignment 7.5 Dodecahedron 7.6 Icosahedron 7.7 Half-pyramid 7.8 Bounding Box 7.9 Linear Extrude extended use examples 7.9.1 Linear Extrude with Scale as an interpolated function 7.9.2 Linear Extrude with Twist as an interpolated function 7.9.3 Linear Extrude with Twist and Scale as interpolated functions 7.10 Rocket 7.11 Horns 7.12 Strandbeest 7.13 Previous 7.14 Next 7.14.1 Command line usage 7.14.2 Export options 7.14.2.1 Camera and image output 7.14.3 Constants 7.14.4 Command to build required files 7.14.5 Processing all .scad files in a folder 7.14.6 Makefile example 7.14.6.1 Automatic
    [Show full text]
  • Issues Related to the Use of Sprutcam in Wood Processing
    Annals of the University of Oradea, Fascicle: Environmental Protection Vol. XXXI, 2018 Analele Universităţii din Oradea, Fascicula: Protecţia Mediului Vol. XXXI, 2018 ISSUES RELATED TO THE USE OF SPRUTCAM IN WOOD PROCESSING Derecichei Laura*, Lucaci Codruţa*, Cheregi Gabriel* *University of Oradea, Faculty of Environmental Protection, 26 Gen. Magheru St., 410048 Oradea, Romania Abstract Computer-assisted use is a step forward in designing technically and economically competitive technological processes in the wood industry. Preparing CNC machining programs for parts with three-dimensional complex surfaces would be extremely difficult without the techniques mentioned above. CAD / CAM products offer the possibility to develop processing programs for existing equipment on the market. These software packages allow, in addition to generate the tool center trajectory, a complex simulation of the machining process in which the movements of the machine elements required in the manufacturing process can be traced. An important branch of CAM methods is numerical control. This is a technique whereby the operations of a machine can be controlled by means of a program's instructions: cutting, milling, drilling, various surfaces of the blank can be carried out in such a way that at the end of the program the piece desired. The simulation of the CNC 5-axis machining operation was carried out with the SPRUTCam program, which was obtained from the "Hermann Oberth" Engineering Faculty of Sibiu in the Department of Machinery and Industrial Equipment. Key words: SPRUTCAM, CAD-CAM ,CNC,. wood INTRODUCTION Steps to get the NC code into SPRUTCAM Processing a complex wood piece on a CNC machine involves generating a CN code that contains, in a numerically coded form, the commands for moving the machine and / or tool trays on the trajectories required to obtain the shape of the finished part.(Ganea, M., 2010, Ganea, M., 2010, Ganea, M., 2000, Jain, A.
    [Show full text]
  • Using TOSCA for Automating the Deployment of Iot Environments
    Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments Ana C. Franco da Silva1, Uwe Breitenbücher2, Pascal Hirmer1, Kálmán Képes2, Oliver Kopp1, Frank Leymann2, Bernhard Mitschang1 and Ronald Steinke3 1Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany 2Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany 3Next Generation Network Infrastructures, Fraunhofer FOKUS, Berlin, Germany Keywords: Internet of Things, TOSCA, Application Deployment, Device Software. Abstract: The automated setup of Internet of Things environments is a major challenge due to the heterogeneous nature of the involved physical components (i.e., devices, sensors, actuators). In general, IoT environments consist of (i) physical hardware components, (ii) IoT middlewares that bind the hardware to the digital world, and (iii) IoT applications that interact with the physical devices through the middlewares (e.g., for monitoring). Setting up each of these requires sophisticated means for software deployment. In this paper, we enable such a means by introducing an approach for automated deployment of entire IoT environments using the Topology and Orchestration Specification for Cloud Applications standard. Based on topology models, all components involved in the IoT environment (devices, IoT middlewares, applications) can be set up automatically. Moreover, to enable interchangeability of IoT middlewares, we show how they can be used as a service to deploy them individually and on-demand for separate use cases. This enables provisioning whole IoT environments out-of- the-box. To evaluate the approach, we present three case studies giving insights in the technical details. 1 INTRODUCTION abstracting the complexity of the devices (Mineraud et al., 2016).
    [Show full text]
  • Experiences in Using Open Source Software for Teaching Electronic Engineering CAD
    Experiences in Using Open Source Software for Teaching Electronic Engineering CAD Dr Simon Busbridge1 & Dr Deshinder Singh Gill School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ [email protected] Abstract Embedded systems and simulation distinguish modern professional electronic engineering from that learnt at school. First year undergraduates typically have little appreciation of engineering software capabilities and file handling beyond elementary word processing. This year we expedited blended teaching through the experiential based learning process via open source engineering software. Students engaged with the entire electronic engineering product creation process from inception, performance simulation, printed circuit board design, manufacture and assembly, to cabinet design and complete finished product. Currently students learn software skills using a mixture of electronic and mechanical engineering software packages. Although these have professional capability they are not available off-campus and are sometimes surprisingly poor in simulating real world devices. In this paper we report use of LTspice, FreePCB and OpenSCAD for the learning and teaching of analogue electronics simulation and manufacture. Comparison of the software options, the type of tasks undertaken, examples of student assignments and outputs, and learning achieved are presented. Examples of assignment based learning, integration between the open source packages and difficulties encountered are discussed. Evaluation of student attitudes and responses to this method of learning and teaching are also discussed, and the educational advantages of using this approach compared to the use of commercial packages is highlighted. Introduction Most educational establishments use software for simulating or designing engineering. Most commercial packages come with an academic licence which restricts access to on-site computers.
    [Show full text]
  • Internet of Things, Smart Cities, Machine-To-Machine Communication, Analytics, Open Data, Technology, International Use Cases, Business Technology
    International Journal of Internet of Things 2017, 6(4): 149-158 DOI: 10.5923/j.ijit.20170604.01 Analyzing the Role of the Intenet-of-Things in Business and Technologically-Smart Cities A. Shinn, K. Nakatani, W. Rodriguez* Florida Gulf Coast University, Fort Myers, Florida, USA Abstract This research analyzes and theorizes on the role that the Internet-of-Things will play in the expansion of business and technologically-smart cities. This study examines: a) the underlying technology, referred to as the Internet of Things that forms the foundation for smart cities; b) what businesses and government must do to successfully transition to a technologically-smart city; and c) how the proliferation of the Internet of Things through the emerging cities will affect local citizens. As machine-to-machine communication becomes increasingly common, new use cases are continually created, as is the case with the use of the Internet of Things in technologically-smart cities. Technology businesses are keeping a close pulse on end-users’ needs in order to identify and create technologies and systems to cater to new use cases. A number of the international smart city-specific use cases will be discussed in this paper along with the technology that aligns to those use cases. Keywords Internet of things, Smart cities, Machine-to-machine communication, Analytics, Open data, Technology, International use cases, Business technology 1. Introduction back to the 1800s in which centralized networks were designed to deliver energy and water and facilitate Since early humans settled to cultivate the land and trade transportation; however, “modern cities designed around with neighbours, forming larger and denser populations, it the private automobile, with single-function zoning, are has been mutually advantageous to organize in cities that becoming more congested, polluted, and unsafe” [1].
    [Show full text]
  • Wood Engraving Using 3 Axis CNC Machine Ms.Disha D.Devardekar1, Ms.Aishwarya J.Gudale2
    Wood Engraving Using 3 Axis CNC Machine Ms.Disha D.Devardekar1, Ms.Aishwarya J.Gudale2, Ms.Rutuja R.Karande3, 1,2,3Department of Electronics & Telecommunication Engineering, Bharati Vidyapeeth’s College of Engineering Kolhapur (India) ABSTRACT This machine can be used for Cutting, Engraving and Marking on wood, acrylic and PCB objects. Design picture that have been made on the PC sent to the microcontroller using serial communication then CNC perform execution on object according to point coordinates. Drill spindles will create patterns on objects automatically according to the design drawings. After testing, the CNC machine can be used for cutting, engraving and marking on wood, acrylic and PCB to 2D or 3D objects with 98.5% of carving accuracy and 100% of depth accuracy.Though there are several models for plotter, this plotter is designed in economical way. Main advantage of this plotter is we can replace the tool based on any application such as engraving machine, laser cutting machine, painting any surface and drawing purposes.Increase in the rapid growth of Technology significantly increased the usage and utilization of CNC systems in industries but at considerable expensive.The idea on fabrication of low cost CNC Router came forward to reduce the cost and complexity in CNC systems.Inspiring from this CNC technology and revolutionary change in the world of digital electronics &Microcontroller, we are presenting here an idea of “ 3 Axis CNC Machine For Wood Engraving Based On CNC Controller.” Keywords: CNC, Cutting, Engraving, Marking, Microcontroller. I.INTRODUCTION Working with automatic electrical and mechanical equipment demands precise, accuracy, speed, consistency and flexibility.
    [Show full text]
  • Nodemcu and Lora Based Temperature Monitoring with Oled
    Turkish Journal of Physiotherapy and Rehabilitation; 32(2) ISSN 2651-4451 | e-ISSN 2651-446X NODEMCU AND LORA BASED TEMPERATURE MONITORING WITH OLED NAMGIRI SURESH, K UDAY KIRAN, P POORNA PRIYA, M ANIL KUMAR, B AKSHITHA, GOVINDA RAO, M SIVA KRISHNA Department of ECE,KLEF deemed to be University, Vaddeswaram, Andhra Pradesh,522502, India [email protected],[email protected],[email protected],anilkumar [email protected],[email protected], [email protected], [email protected] ABSTRACT In this day and age, the IoT is picking up incredible fame. Installed gadgets have become huge part of our lives. Individuals can screen, track, and do significantly more from Distance from a good ways. Various correspondence innovations have been accessible for collaboration between IoT gadgets over the most recent few years. The most mainstream are the Bluetooth Module and Wi-Fi Technology. Be that as it may, they have not many limitations, for example, restricted reach, restricted passages and high force utilization. So, Semtech is actualizing LoRa innovation to take care of every one of these issues. The gadget runs for longer than a year utilizing a solitary battery. Utilizing Lora Module SX1278 and ESP32 Wifi Module, we can make a Lora Transmitter and Receiver. The strategy for correspondence is highlight point and information is sent from one end (transmitter) to another end remotely (receiver). Keywords: Iot, LoRa, Bluetooth Module, Wi-fi Technology, Esp32 Wifi Module, Transmitter, Reciever. 1. INTRODUCTION The period of associated antiques is currently. IoT (Internet of Things) are of incredible criticalness in pretty much every region of this kind.As organizations, producing, purchaser hardware, car and significantly more.
    [Show full text]
  • Openscad User Manual/Print Version Table of Contents Introduction First
    OpenSCAD User Manual/Print version Table of Contents 1. Introduction 2. First Steps 3. The OpenSCAD User Interface 4. The OpenSCAD Language 1. General 2. Mathematical Operators 3. Mathematical Functions 4. String Functions 5. Primitive Solids 6. Transformations 7. Conditional and Iterator Functions 8. CSG Modelling 9. Modifier Characters 10. Modules 11. Include Statement 12. Other Language Feature 5. Using the 2D Subsystem 1. 2D Primitives 2. 3D to 2D Projection 3. 2D to 2D Extrusion 4. DXF Extrusion 5. Other 2D formats 6. STL Import and Export 1. STL Import 2. STL Export 7. Commented Example Projects 8. Using OpenSCAD in a command line environment 9. Building OpenSCAD from Sources 1. Building on Linux/UNIX 2. Cross-compiling for Windows on Linux or Mac OS X 3. Building on Windows 4. Building on Mac OS X 10. Libraries 11. Glossary 12. Index Introduction OpenSCAD is a software for creating solid 3D CAD objects. It is free software (http://www.gnu.org/philosophy/free-sw.html) and available for GNU/Linux (http://www.gnu.org/) , MS Windows and Apple OS X. Unlike most free software for creating 3D models (such as the well-known application Blender (http://www.blender.org/) ), OpenSCAD does not focus on the artistic aspects of 3D modelling, but instead focuses on the CAD aspects. So it might be the application you are looking for when you are planning to create 3D models of machine parts, but probably is not what you are looking for when you are more interested in creating computer- animated movies. OpenSCAD is not an interactive modeller.
    [Show full text]
  • Making Things Move DIY Mechanisms for Inventors, Hobbyists, and Artists
    Making Things Move DIY Mechanisms for Inventors, Hobbyists, and Artists Dustyn Roberts New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-174168-2 MHID: 0-07-174168-2 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174167-5, MHID: 0-07-174167-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade- marked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringe- ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of hu- man or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.
    [Show full text]