Kqueue: a Generic and Scalable Event Notification Facility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nvme-Based Caching in Video-Delivery Cdns
NVMe-Based Caching In Video-Delivery CDNs Thomas Colonna 1901942 Double Degree INSA Rennes Supervisor: Sébastien Lafond Faculty of Science and Engineering Åbo Akademi University 2020 In HTTP-based video-delivery CDNs (content delivery networks), a critical compo- nent is caching servers that serve clients with content obtained from an origin server. These caches store the content they obtain in RAM or onto disks for serving additional clients without fetching them from the origin. For most use cases, access to the disk remains the limiting factor, thus requiring a significant amount of RAM to avoid these accesses and achieve good performance, but increasing the cost. In this master’s thesis, we benchmark various approaches to provide storage such as regular disks and NVMe-based SSDs. Based on these insights, we design a caching mod- ule for a web server relying on kernel-bypass, implemented using the reference framework SPDK. The outcome of the master’s thesis is a caching module leveraging specific proper- ties of NVMe disks, and benchmark results for the various types of disks with the two approaches to caching (i.e., regular filesystem based or NVMe-specific). Contents 1 Introduction 1 2 Background 3 2.1 Caching in the context of CDNs . .3 2.2 Performances of the different disk models . .4 2.2.1 Hard-Disk Drive . .4 2.2.2 Random-Access Memory . .5 2.2.3 Solid-State Drive . .6 2.2.4 Non-Volatile Main Memory . .6 2.2.5 Performance comparison of 2019-2020 storage devices . .6 2.3 Analysing Nginx . .7 2.3.1 Event processing . -
A Practical UNIX Capability System
A Practical UNIX Capability System Adam Langley <[email protected]> 22nd June 2005 ii Abstract This report seeks to document the development of a capability security system based on a Linux kernel and to follow through the implications of such a system. After defining terms, several other capability systems are discussed and found to be excellent, but to have too high a barrier to entry. This motivates the development of the above system. The capability system decomposes traditionally monolithic applications into a number of communicating actors, each of which is a separate process. Actors may only communicate using the capabilities given to them and so the impact of a vulnerability in a given actor can be reasoned about. This design pattern is demonstrated to be advantageous in terms of security, comprehensibility and mod- ularity and with an acceptable performance penality. From this, following through a few of the further avenues which present themselves is the two hours traffic of our stage. Acknowledgments I would like to thank my supervisor, Dr Kelly, for all the time he has put into cajoling and persuading me that the rest of the world might have a trick or two worth learning. Also, I’d like to thank Bryce Wilcox-O’Hearn for introducing me to capabilities many years ago. Contents 1 Introduction 1 2 Terms 3 2.1 POSIX ‘Capabilities’ . 3 2.2 Password Capabilities . 4 3 Motivations 7 3.1 Ambient Authority . 7 3.2 Confused Deputy . 8 3.3 Pervasive Testing . 8 3.4 Clear Auditing of Vulnerabilities . 9 3.5 Easy Configurability . -
The Linux Kernel Module Programming Guide
The Linux Kernel Module Programming Guide Peter Jay Salzman Michael Burian Ori Pomerantz Copyright © 2001 Peter Jay Salzman 2007−05−18 ver 2.6.4 The Linux Kernel Module Programming Guide is a free book; you may reproduce and/or modify it under the terms of the Open Software License, version 1.1. You can obtain a copy of this license at http://opensource.org/licenses/osl.php. This book is distributed in the hope it will be useful, but without any warranty, without even the implied warranty of merchantability or fitness for a particular purpose. The author encourages wide distribution of this book for personal or commercial use, provided the above copyright notice remains intact and the method adheres to the provisions of the Open Software License. In summary, you may copy and distribute this book free of charge or for a profit. No explicit permission is required from the author for reproduction of this book in any medium, physical or electronic. Derivative works and translations of this document must be placed under the Open Software License, and the original copyright notice must remain intact. If you have contributed new material to this book, you must make the material and source code available for your revisions. Please make revisions and updates available directly to the document maintainer, Peter Jay Salzman <[email protected]>. This will allow for the merging of updates and provide consistent revisions to the Linux community. If you publish or distribute this book commercially, donations, royalties, and/or printed copies are greatly appreciated by the author and the Linux Documentation Project (LDP). -
Procedures to Build Crypto Libraries in Minix
Created by Jinkai Gao (Syracuse University) Seed Document How to talk to inet server Note: this docment is fully tested only on Minix3.1.2a. In this document, we introduce a method to let user level program to talk to inet server. I. Problem with system call Recall the process of system call, refering to http://www.cis.syr.edu/~wedu/seed/Labs/Documentation/Minix3/System_call_sequence.pd f We can see the real system call happens in this function call: _syscall(FS, CHMOD, &m) This function executes ‘INT 80’ to trap into kernel. Look at the parameter it passs to kernel. ‘CHMOD’ is a macro which is merely the system call number. ‘FS’ is a macro which indicates the server which handles the chmod system call, in this case ‘FS’ is 1, which is the pid of file system server process. Now your might ask ‘why can we hard code the pid of the process? Won’t it change?’ Yes, normally the pid of process is unpredictable each time the system boots up. But for fs, pm, rs, init and other processes which is loaded from system image at the very beginning of booting time, it is not true. In minix, you can dump the content of system image by pressing ‘F3’, then dump the current running process table by pressing ‘F1’. What do you find? The first 12 entries in current process table is exactly the ones in system image with the same order. So the pids of these 12 processes will not change. Inet is different. It is not in the system image, so it is not loaded into memory in the very first time. -
UNIX Systems Programming II Systems Unixprogramming II Short Course Notes
Systems UNIXProgramming II Systems UNIXProgramming II Systems UNIXProgramming II UNIX Systems Programming II Systems UNIXProgramming II Short Course Notes Alan Dix © 1996 Systems Programming II http://www.hcibook.com/alan/ UNIX Systems Course UNIXProgramming II Outline Alan Dix http://www.hcibook.com/alan/ Session 1 files and devices inodes, stat, /dev files, ioctl, reading directories, file descriptor sharing and dup2, locking and network caching Session 2 process handling UNIX processes, fork, exec, process death: SIGCHLD and wait, kill and I/O issues for fork Session 3 inter-process pipes: at the shell , in C code and communication use with exec, pseudo-terminals, sockets and deadlock avoidance Session 4 non-blocking I/O and UNIX events: signals, times and select I/O; setting timers, polling, select, interaction with signals and an example Internet server Systems UNIXProgrammingII Short Course Notes Alan Dix © 1996 II/i Systems Reading UNIXProgramming II ¥ The Unix V Environment, Stephen R. Bourne, Wiley, 1987, ISBN 0 201 18484 2 The author of the Borne Shell! A 'classic' which deals with system calls, the shell and other aspects of UNIX. ¥ Unix For Programmers and Users, Graham Glass, Prentice-Hall, 1993, ISBN 0 13 061771 7 Slightly more recent book also covering shell and C programming. Ì BEWARE Ð UNIX systems differ in details, check on-line documentation ¥ UNIX manual pages: man creat etc. Most of the system calls and functions are in section 2 and 3 of the manual. The pages are useful once you get used to reading them! ¥ The include files themselves /usr/include/time.h etc. -
Toward MP-Safe Networking in Netbsd
Toward MP-safe Networking in NetBSD Ryota Ozaki <[email protected]> Kengo Nakahara <[email protected]> EuroBSDcon 2016 2016-09-25 Contents ● Background and goals ● Approach ● Current status ● MP-safe Layer 3 forwarding ● Performance evaluations ● Future work Background ● The Multi-core Era ● The network stack of NetBSD couldn’t utilize multi-cores ○ As of 2 years ago CPU 0 NIC A NIC B CPU 1 Our Background and Our Goals ● Internet Initiative Japan Inc. (IIJ) ○ Using NetBSD in our products since 1999 ○ Products: Internet access routers, etc. ● Our goal ○ Better performance of our products, especially Layer 2/3 forwarding, tunneling, IPsec VPN, etc. → MP-safe networking Our Targets ● Targets ○ 10+ cores systems ○ 1 Gbps Intel NICs and virtualized NICs ■ wm(4), vmx(4), vioif(4) ○ Layer 2 and 3 ■ IPv4/IPv6, bridge(4), gif(4), vlan(4), ipsec(4), pppoe(4), bpf(4) ● Out of targets ○ 100 cores systems and above ○ Layer 4 and above ■ and any other network components except for the above Approach ● MP-safe and then MP-scalable ● Architecture ○ Utilize hardware assists ○ Utilize lightweight synchronization mechanisms ● Development ○ Restructure the code first ○ Benchmark often Approach : Architecture ● Utilize hardware assists ○ Distribute packets to CPUs by hardware ■ NIC multi-queue and RSS ● Utilize software techniques ○ Lightweight synchronization mechanisms ■ Especially pserialize(9) and psref(9) ○ Existing facilities ■ Fast forwarding and ipflow Forwarding Utilizing Hardware Assists Least locks Rx H/W queues CPU 0 Tx H/W queues queue 0 queue 0 CPU 1 queue 1 queue 1 NIC A NIC B queue 2 queue 2 CPU 2 queue 3 queue 3 CPU 3 Packets are distributed Packets are processed by hardware based on on a received CPU to flow (5-tuples) the last Approach : Development ● Restructure the code first ○ Hard to simply apply locks to the existing code ■ E.g., hardware interrupt context for Layer 2, cloning/cloned routes, etc. -
Advancing Mac OS X Rootkit Detecron
Advancing Mac OS X Rootkit Detec4on Andrew Case (@attrc) Volatility Foundation Golden G. Richard III (@nolaforensix) University of New Orleans 2 hot research areas State of Affairs more established Live Forensics and Tradional Storage Memory Analysis Forensics Digital Forensics Reverse Engineering Incident Response Increasingly encompasses all the others Copyright 2015 by Andrew Case and Golden G. Richard III 3 Where’s the Evidence? Files and Filesystem Applica4on Windows Deleted Files metadata metadata registry Print spool Hibernaon Temp files Log files files files Browser Network Slack space Swap files caches traces RAM: OS and app data Volale Evidence structures Copyright 2015 by Andrew Case and Golden G. Richard III 4 Volale Evidence 1 011 01 1 0 1 111 0 11 0 1 0 1 0 10 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 Copyright 2015 by Andrew Case and Golden G. Richard III 5 Awesomeness Progression: File Carving Can carve Chaos: files, but More can't Faster Almost not very accurate Hurray! carve files well Tools Manual File type Fragmentaon, appear, MulDthreading, hex editor aware damned but have beer design stuff carving, et al spinning disks! issues Images: hLps://easiersaidblogdotcom.files.wordpress.com/2013/02/hot_dogger.jpg hLp://cdn.bigbangfish.com/555/Cow/Cow-6.jpg, hLp://f.tqn.com/y/bbq/1/W/U/i/Big_green_egg_large.jpg hLp://i5.walmarDmages.com/dfw/dce07b8c-bb22/k2-_95ea6c25-e9aa-418e-a3a2-8e48e62a9d2e.v1.jpg Copyright 2015 by Andrew Case and Golden G. Richard III 6 Awesomeness Progression: Memory Forensics Pioneering Chaos: More, efforts Beyond run more, show great Windows ?? strings? more promise pt_finder et al More aenDon Manual, Mac, … awesome but to malware, run strings, Linux, BSD liLle context limited filling in the gaps funcDonality Images: hLps://s-media-cache-ak0.pinimg.com/736x/75/5a/37/755a37727586c57a19d42caa650d242e.jpg,, hLp://img.photobucket.com/albums/v136/Hell2Pay77/SS-trucks.jpg hLp://skateandannoy.com/wp-content/uploads/2007/12/sportsbars.jpg, hLp://gainesvillescene.com/wp-content/uploads/2013/03/dog-longboard.jpg Copyright 2015 by Andrew Case and Golden G. -
Tinkertool System 7 Reference Manual Ii
Documentation 0642-1075/2 TinkerTool System 7 Reference Manual ii Version 7.5, August 24, 2021. US-English edition. MBS Documentation 0642-1075/2 © Copyright 2003 – 2021 by Marcel Bresink Software-Systeme Marcel Bresink Software-Systeme Ringstr. 21 56630 Kretz Germany All rights reserved. No part of this publication may be redistributed, translated in other languages, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of the publisher. This publication may contain examples of data used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. The publisher may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice. Make sure that you are using the correct edition of the publication for the level of the product. The version number can be found at the top of this page. Apple, macOS, iCloud, and FireWire are registered trademarks of Apple Inc. Intel is a registered trademark of Intel Corporation. UNIX is a registered trademark of The Open Group. Broadcom is a registered trademark of Broadcom, Inc. Amazon Web Services is a registered trademark of Amazon.com, Inc. -
ICP and the Squid Web Cache* 1 Introduction
ICP and the Squid Web Cache Duane Wessels k cla y August 13, 1997 Abstract We describ e the structure and functionality of the Internet Cache Proto col ICP and its implementation in the Squid Web Caching software. ICP is a lightweight message format used for communication among Web caches. Caches exchange ICP queries and replies to gather information to use in selecting the most appropriate lo cation from which to retrieve an ob ject. We present background on the history of ICP, and discuss issues in ICP deployment, e- ciency, security, and interaction with other asp ects of Web trac b ehavior. We catalog successes, failures, and lessons learned from using ICP to deploy a global Web cache hierarchy. 1 Intro duction Ever since the World-Wide Web rose to p opularity around 1994, much e ort has fo cused on reducing latency exp erienced by users. Sur ng the Web can b e slow for many reasons. Server systems b ecome slow when overloaded, esp ecially when hot sp ots suddenly app ear. Congestion can also o ccur at network exchange p oints or across links, and is esp ecially prevalent across trans-o ceanic links that often cost millions of dollars p er month. A common, alb eit exp ensiveway to alleviate such problems is to upgrade the overloaded resource: get a faster server, another E1, a bigger switch. However, this approach is not only often eco- nomically infeasible, but p erhaps more imp ortantly, it also fails to consider the numerous parties involved in even a single, simple Web transaction. -
Squirrel: a Decentralized Peer-To-Peer Web Cache
To appear in the 21th ACM Symposium on Principles of Distributed Computing (PODC 2002) Squirrel: A decentralized peer-to-peer web cache ∗ Sitaram Iyer Antony Rowstron Peter Druschel Rice University Microsoft Research Rice University 6100 Main Street, MS-132 7 J J Thomson Close 6100 Main Street, MS-132 Houston, TX 77005, USA Cambridge, CB3 0FB, UK Houston, TX 77005, USA [email protected] [email protected] [email protected] ABSTRACT There is substantial literature in the areas of cooperative This paper presents a decentralized, peer-to-peer web cache web caching [3, 6, 9, 20, 23, 24] and web cache workload char- called Squirrel. The key idea is to enable web browsers on acterization [4]. This paper demonstrates how it is possible, desktop machines to share their local caches, to form an ef- desirable and efficient to adopt a peer-to-peer approach to ficient and scalable web cache, without the need for dedicated web caching in a corporate LAN type environment, located hardware and the associated administrative cost. We propose in a single geographical region. Using trace-based simula- and evaluate decentralized web caching algorithms for Squir- tion, it shows how most of the functionality and performance rel, and discover that it exhibits performance comparable to of a traditional web cache can be achieved in a completely a centralized web cache in terms of hit ratio, bandwidth us- self-organizing system that needs no extra hardware or ad- age and latency. It also achieves the benefits of decentraliza- ministration, and is fault-resilient. The following paragraphs tion, such as being scalable, self-organizing and resilient to elaborate on these ideas. -
A Multiplatform Pseudo Terminal
A Multi-Platform Pseudo Terminal API Project Report Submitted in Partial Fulfillment for the Masters' Degree in Computer Science By Qutaiba Mahmoud Supervised By Dr. Clinton Jeffery ABSTRACT This project is the construction of a pseudo-terminal API, which will provide a pseudo-terminal interface access to interactive programs. The API is aimed at developing an extension to the Unicon language to allow Unicon programs to easily utilize applications that require user interaction via a terminal. A pseudo-terminal is a pair of virtual devices that provide a bidirectional communication channel. This project was constructed to enable an enhancement to a collaborative virtual environment, because it will allow external tools such to be utilized within the same environment. In general the purpose of this API is to allow the UNICON runtime system to act as the user via the terminal which is provided by the API, the terminal is in turn connected to a client process such as a compiler, debugger, or an editor. It can also be viewed as a way for the UNICON environment to control and customize the input and output of external programs. Table of Contents: 1. Introduction 1.1 Pseudo Terminals 1.2 Other Terminals 1.3 Relation To Other Pseudo Terminal Applications. 2. Methodology 2.1 Pseudo Terminal API Function Description 3. Results 3.1 UNIX Implementation 3.2 Windows Implementation 4. Conclusion 5. Recommendations 6. References Acknowledgments I would like to thank my advisor, Dr. Clinton Jeffery, for his support, patience and understanding. Dr. Jeffery has always been prompt in delivering and sharing his knowledge and in providing his assistance. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.