atoms Article Towards an Improved Test of the Standard Model’s Most Precise Prediction G. Gabrielse 1,*, S. E. Fayer 1, T. G. Myers 1 and X. Fan 1,2 1 Center for Fundamental Physics, Northwestern University, 2233 Tech Drive, Evanston, IL 60208, USA;
[email protected] (S.E.F.);
[email protected] (T.G.M.);
[email protected] (X.F.) 2 Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 01238, USA * Correspondence:
[email protected] Received: 6 March 2019; Accepted: 10 April 2019; Published: 25 April 2019 Abstract: The electron and positron magnetic moments are the most precise prediction of the standard model of particle physics. The most accurate measurement of a property of an elementary particle has been made to test this result. A new experimental method is now being employed in an attempt to improve the measurement accuracy by an order of magnitude. Positrons from a “student source” now suffice for the experiment. Progress toward a new measurement is summarized. Keywords: standard model; electron; positron; magnetic moment; g value; fine structure constant; Penning trap 1. Introduction The Standard Model of Particle Physics (SM) is the great triumph and the great frustration of modern physics [1]. It is a great triumph because all laboratory tests of the SM have so far agreed with its predictions within measurement and calculation uncertainties. It is a great frustration because the SM and its symmetries are unable to account for basic properties of our universe. According to the SM, for example, the big bang would produce essentially equal numbers of matter and antimatter particles which would then annihilate as the universe cools.