Varijabilnost Obicne Jele (Abies Alba Mill.)

Total Page:16

File Type:pdf, Size:1020Kb

Varijabilnost Obicne Jele (Abies Alba Mill.) IMPRESSUM ZNANSTVENA MONOGRAFIJA Varijabilnost obične jele (Abies alba Mill.) u Bosni i Hercegovini IZDAVAČ: Udruženje inženjera i tehničara šumarstva Federacije Bosne i Hercegovine (UŠIT FBiH) SUIZDAVAČ: Silva Slovenica - izdavački centar Šumarskog instituta Slovenije, Ljubljana GODINA IZDANJA: 2016. RECENZENTI: Prof. dr. Davorin Kajba, Prof. dr. Milan Mataruga TEHNIČKA UREDNICA: Leila Čmajčanin, Art7 LEKTOR I KOREKTOR: Samira Mazalović GRAFIČKI DIZAJN I TEHNIČKA PRIPREMA: ART 7 AUTOR FOTOGRAFIJA NA OMOTU: Prof. dr. Faruk Bogunić CIP - Katalogizacija u publikaciji Nacionalna i univerzitetska biblioteka Bosne i Hercegovine, Sarajevo Ova publikacija je sufinansirana iz LIFEGENMON projekta, koji 582.475(497.6) je financijski podržan od strane LIFE (Financijskog instrumenta BALLIAN, Dalibor za okoliš) Europske unije, Varijabilnost obične jele (Abies alba Mill.) u Ministarstva zaštite okoliša i prostornog planiranja Bosni i Hercegovini [Elektronski izvor] / Slovenije i Šumarskog instituta Slovenije. Dalibor Ballian, Velid Halilović. - Sarajevo : Udruženje inženjera i tehničara šumarstva Federacije Bosne i Hercegovine ; Ljubljana : Silva Slovenica - izdavački centar Šumarskog instituta Slovenije, 2016 Sistemski zahtjevi nisu navedeni Dostupno i na: https://www.usitfbih.ba. - Ova publikacija je tiskana u suradnji sa Silva Nasl. s nasl. ekrana Slovenica izdavačkim centrom Šumarskog instituta Slovenije, Ljubljana, Slovenija ISBN 978-9926-8071-0-8 (Udruženje inženjera i tehničara šumarstva Federacije Bosne i Hercegovine) 1. Halilović, Velid COBISS.BH-ID 22841862 Nijedan dio ove knjige ne smije se umnožavati ili na bilo koji način reproducirati bez dopuštenja autora. Prof. dr. Dalibor Ballian Doc. dr. Velid Halilović VARIJABILNOST OBIČNE JELE (Abies alba Mill.) U BOSNI I HERCEGOVINI Sarajevo, Ljubljana 2016. godine PREDGOVOR Posljednjih se desetljeća u susjednim zemljama i Europi objavio veliki broj monografija vezanih za ekonomski značajne vrste šumskog drveća. U te monografije su ugrađene mnoge spoznaje iz brojnih suvremenih istraživanja koja su aktualna za suvremeno šumarstvo. U Bosni i Hercegovini za sada nemamo takvih kapitalnih publikacija, te se već duže vrijeme osjeti nihov nedostatak. To nas je potaknulo da krenemo u izradu ove manje i usko specijalizirane monografije o običnoj jeli, za nas najvrednijoj vrsti među četinjačama. Sama monografija sadržava suvremena istraživanja o varijabilnosti jele u Bosni i Hercegovini i njenoj genetskoj strukturi do koje se došlo kroz niz istraživanja tijekom proteklih 18 godina. Većina podataka je ranije objavljena u brojnim znanstvenim radovima kod nas i u inozemstvu, ali ima i jedan dio podataka koji se prvi put objavljuje. U monografiji se mogu naći i osnovni podaci o sistematici obične jele, njenoj morfologiji, rasprostiranju i ekologiji obične jele, te praktične i osnovne znanstvene spoznaje o morfološkoj varijabilnosti i genetskoj strukturi na temelju cpDNK, mtDNK i izoenzima. Iako su kroz monografiju i rasprave prikazana i brojna svjetska iskustva s jelom, ipak srž ove knjige je prilagođena potrebama bosanskohercegovačkog šumarstva i svih ostalih koji žele proširiti svoja saznanja o običnoj jeli, kraljici bosanskohercegovačkih šuma. Prilikom rada na ovoj monografiji susretali smo se sa brojnim problemima i zazovima, te su nam brojne kolege izašle u susret i pomogli u realizaciji ovog za nas veoma značajnog posla. Zahvalnost dugujemo i kolegi prof. dr. Faruku Boguniću zbog pomoći pri izradi fotografija sa morfološkim detaljima cvijeta, češera, sjemena i iglica obične jele, što poglavlju morfologije daje posebnu vrijednost i specifičnost. Zahvalu dugujemo kolegama i šumarskim poduzeća koji su nam tijekom 18 godina nesebično pomagali prilikom sabiranja materijala za brojna istraživanja koja smo provodili s običnom jelom, kao i na postavljanju terenskih pokusa. Nadam se da nam kolege neće zamjeriti što ih nismo poimenično pobrojali, ali bi spisak bio jako veliki i moglo bi nam se desiti da smo koga izostavili. Ipak svi se mogu prepoznati kada pročitaju ovu monografiju i vide koji je materijal obrađen. Recenzentima se posebno zahvaljujemo na primjedbama i korisnim prijedlozima, čime su znatno unaprijedili i poboljšali tekst. Unaprijed zahvaljujemo svim kolegama i čitateljima koji će nas upozoriti na propuste ili nedostatke u tekstu kako bismo zajednički pridonijeli proširenju znanja o toj problematici. Autori Sarajevo, 2016. SADRŽAJ UVOD . 11 SISTEMATIKA OBIČNE JELE . 21 Pregled taksonomskih jedinica s njihovim osnovnim karakteristikama . 23 MORFOLOŠKE KARAKTERISTIKE OBIČNE JELE . 26 PRIRODNA RASPROSTRANJENOST OBIČNE JELE . 30 DINAMIKA POPULACIJA OBIČNE JELE . 37 EKOLOŠKE OSOBITOSTI OBIČNE JELE . 44 Klimatski uvjeti . 44 Svjetlost . 44 Toplina . 45 Vlaga . 45 Uvjeti tla . 45 Prirašćivanje . 46 Uzgojna svojstva jele . 47 Ekološko-vegetacijska pripadnost obične jele . 49 Pripanonska oblast . 50 1. Sjevernobosansko područje . 50 2. Sjeverozapadno bosansko područje . 51 Prelazno ilirsko-mezijska oblast . 51 1. Donje-drinsko područje . 51 2. Gornje-drinsko područje . 52 Oblast unutrašnjih Dinarida . 53 1. Područje cazinske Krajine . 53 2. Zapadnobosansko vapnenačko-dolomitno područje . 53 3. Srednjobosansko područje . 54 4. Zavidovićko-teslićko područje . 55 5. Područje istočnobosanske visoravni . 56 6. Jugoistočnobosansko područje . 56 Mediteransko-dinarska oblast . 58 1.Submediteransko-planinsko područje . 58 2. Submediteransko područje . 59 Pregled najznačajnijih fitocenoza obične jele . 59 ISTRAŽIVANJA VARIJABILNOSTI OBIČNE JELE U BOSNI I HERCEGOVINI . 63 MORFOLOŠKO-FIZIOLOŠKA ISTRAŽIVANJA . 64 ISTRAŽIVANJA ČEŠERA I SJEMENA OBIČNE JELE U SREDIŠNJOJ BOSNI . 64 Izbor i opis terenskih objekata . 64 Način skupljanja uzoraka i mjerenja istraživanih svojstava . 65 Obrada podataka istraživanih svojstava . 67 Morfologija češera . 67 Dužina češera . 67 Širina češera na sredini dužine . 69 Širina češera 2 cm od baze češera . 72 Širina češera 1 cm od vrha češera . 73 Morfologija sjemena . 74 Dužina sjemena s krilcem . 74 Širina krilca na najširem dijelu . 78 Dužina sjemena . 79 Širina sjemena na širem dijelu . 80 Debljina sjemena . 81 Težina 1.000 komada sjemenki . 81 Morfologija ljuske češera . 83 Dužina ljuske češera . 83 Širina ljuske češera . 84 Klijavost sjemena . 85 Energija klijavosti sjemena . 85 Klijavost sjemena . ..
Recommended publications
  • The Role of Fir Species in the Silviculture of British Forests
    Kastamonu Üni., Orman Fakültesi Dergisi, 2012, Özel Sayı: 15-26 Kastamonu Univ., Journal of Forestry Faculty, 2012, Special Issue The Role of True Fir Species in the Silviculture of British Forests: past, present and future W.L. MASON Forest Research, Northern Research Station, Roslin, Midlothian, Scotland EH25 9SY, U.K. E.mail:[email protected] Abstract There are no true fir species (Abies spp.) native to the British Isles: the first to be introduced was Abies alba in the 1600s which was planted on some scale until the late 1800s when it proved vulnerable to an insect pest. Thereafter interest switched to North American species, particularly grand (Abies grandis) and noble (Abies procera) firs. Provenance tests were established for A. alba, A. amabilis, A. grandis, and A. procera. Other silver fir species were trialled in forest plots with varying success. Although species such as grand fir have proved highly productive on favourable sites, their initial slow growth on new planting sites and limited tolerance of the moist nutrient-poor soils characteristic of upland Britain restricted their use in the afforestation programmes of the last century. As a consequence, in 2010, there were about 8000 ha of Abies species in Britain, comprising less than one per cent of the forest area. Recent species trials have confirmed that best growth is on mineral soils and that, in open ground conditions, establishment takes longer than for other conifers. However, changes in forest policies increasingly favour the use of Continuous Cover Forestry and the shade tolerant nature of many fir species makes them candidates for use with selection or shelterwood silvicultural systems.
    [Show full text]
  • Abstract Walker-Lane, Laura Newman
    ABSTRACT WALKER-LANE, LAURA NEWMAN. The Effect of Hemlock Woolly Adelgid Infestation on Water Relations of Carolina and Eastern Hemlock. (Under the direction of John Frampton.) In North America, hemlock woolly adelgid (HWA; Adelges tsugae Annand) is an exotic insect pest from Asia that is causing severe decimation of native eastern hemlock (Tsuga canadensis (L.) Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). Extensive research has been committed to the ecological impacts and potential control measures of HWA, but the exact physiological mechanisms that cause tree decline and mortality are not known. Eastern and Carolina hemlock may be reacting to infestation in a manner similar to the response of Fraser fir (Abies fraseri (Pursh.) Poir.) to infestation by balsam woolly adelgid (BWA; Adelges picea Ratz.). It is known that Fraser fir produces abnormal xylem in response to BWA feeding. This abnormal xylem obstructs water movement within the trees, causing Fraser fir to die of water-stress. In this study, water relations within 15 eastern and Carolina hemlock were evaluated to determine if infestation by HWA was causing water-stress. Water potential, carbon-13 isotope ratio, stem conductivity, and stomatal conductance measurements were conducted on samples derived from those trees. In addition, branch samples were analyzed for possible wood anatomy alterations as a result of infestation. Pre-dawn branch water potential (Ψ) measurements were more negative in infested hemlock than in non-infested trees. Carbon isotope ratios (normalized δ13C vs. VPDB) of the branches were more positive for infested trees, while stomatal conductance (gs) was lower in infested trees. These results indicate that infested eastern and Carolina hemlock are experiencing drought-like symptoms.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Population Isolation Results in Unexpectedly High Differentiation in Carolina Hemlock (Tsuga Caroliniana), an Imperiled Southern Appalachian Endemic Conifer
    Tree Genetics & Genomes (2017) 13:105 DOI 10.1007/s11295-017-1189-x ORIGINAL ARTICLE Population isolation results in unexpectedly high differentiation in Carolina hemlock (Tsuga caroliniana), an imperiled southern Appalachian endemic conifer Kevin M. Potter1 & Angelia Rose Campbell2 & Sedley A. Josserand3 & C. Dana Nelson3,4 & Robert M. Jetton5 Received: 16 December 2016 /Revised: 14 August 2017 /Accepted: 10 September 2017 # US Government (outside the USA) 2017 Abstract Carolina hemlock (Tsuga caroliniana Engelm.) is a range-wide sampling of the species. Data from 12 polymor- rare conifer species that exists in small, isolated populations phic nuclear microsatellite loci were collected and analyzed within a limited area of the Southern Appalachian Mountains for these samples. The results show that populations of of the USA. As such, it represents an opportunity to assess Carolina hemlock are extremely inbred (FIS =0.713)andsur- whether population size and isolation can affect the genetic prisingly highly differentiated from each other (FST =0.473) diversity and differentiation of a species capable of long- with little gene flow (Nm = 0.740). Additionally, most popu- distance gene flow via wind-dispersed pollen and seed. This lations contained at least one unique allele. This level of dif- information is particularly important in a gene conservation ferentiation is unprecedented for a North American conifer context, given that Carolina hemlock is experiencing mortality species. Numerous genetic clusters were inferred using two throughout
    [Show full text]
  • Identifying and Managing Christmas Tree Diseases, Pests, and Other Problems Luisa Santamaria Chal Landgren
    PNW 659 ∙ April 2014 Identifying and Managing Christmas Tree Diseases, Pests, and Other Problems Luisa Santamaria Chal Landgren A Pacific Northwest Extension Publication Oregon State University ∙ University of Idaho ∙ Washington State University AUTHORS & ACKNOWLEDGMENTS Luisa Santamaria, assistant professor, Extension plant pathologist in nursery crops; and Chal Landgren, professor, Extension Christmas tree specialist; both of Oregon State University. The authors thank the following peers for the review of these diagnostic cards and for their helpful comments and suggestions. In alphabetical order: • Michael Bondi–Oregon State University • Gary Chastagner–Washington State University • Rick Fletcher–Oregon State University • Alina Freire-Fierro–Drexel University • Carla Garzon–Oklahoma State University • Dionisia Morales–Oregon State University • Kathy Riley–Washington State University • Helmuth Rogg–Oregon Department of Agriculture • David Shaw–Oregon State University • Cathy E. Thomas–Pennsylvania Department of Agriculture • Luis Valenzuela–Oregon State University This project was funded by the USDA Specialty Crop Block Grant program (grant numbers ODA-2577-GR and ODA-3557-GR). TABLE OF CONTENTS Diseases Damage (Weather) Annosus Root Rot . .1-2 Frost Damage . 43 Phytophthora Root Rot . .3-4 Winter Injury . 44 Grovesiella Canker . .5-6 Drought . 45 Interior Needle Blight . .7-8 Heat Damage . 46 Rhabdocline Needle Cast . .9-10 Swiss Needle Cast . 11-12 Damage (Chemical) Melampsora Needle Rust . 13-14 2,4-D and triclopyr . 47 Pucciniastrum Needle Rust . 15-16 Fertilizer Burn . 48 Uredinopsis Needle Rust . 17-18 Glyphosate (Roundup) . 49 Triazines . 50 Insects Twig Aphid . 19-20 Damage (Vertebrate) Conifer Root Aphid . 21-22 Deer, Elk, Mice, & Voles . 51 Conifer Aphids . 23-24 Rabbits & Birds . 52 Balsam Woolly Adelgid .
    [Show full text]
  • Biology and Management of Balsam Twig Aphid
    Extension Bulletin E-2813 • New • July 2002 Biology and Management of Balsam Twig Aphid Kirsten Fondren Dr. Deborah G. McCullough Research Assistant Associate Professor Dept. of Entomology Dept. of Entomology and Michigan State University Dept. of Forestry Michigan State University alsam twig aphid (Mindarus abietinus MICHIGAN STATE aphids will also feed on other true firs, Koch) is a common and important UNIVERSITY including white fir (A. concolor) and B insect pest of true fir trees (Fig. 1). Canaan fir (A. balsamea var. phanerolepsis), This bulletin is designed to help you EXTENSION especially if they are growing near balsam recognize and manage balsam twig aphid in or Fraser fir trees. Christmas tree plantations. Knowing the biology of this aphid will help you to plan scouting and Biology control activities, evaluate the extent of damage caused by Balsam twig aphid goes through three generations every aphid feeding and identify the aphid’s natural enemies. year. The aphids overwinter as eggs on needles near the Using an integrated management program will help you to bases of buds. Eggs begin to hatch early in spring, typically control balsam twig aphid efficiently and effectively. around late March to mid-April, depending on temperatures and location within the state. Hatching is completed in one to two weeks. Recent studies in Michigan showed that egg Photo by M. J. Higgins. hatch began at roughly 60 to 70 degree-days base 50 degrees F (DD50) and continued until approximately 100 DD50 (see degree-days discussion under “Timing insecticide sprays” on p. 5). The newly hatched aphids are very small and difficult to see, but by mid- to late April, at approximately 100 to 140 DD50, they have grown enough to be easily visible against a dark background.
    [Show full text]
  • Conifer Quarterly
    Conifer Quarterly Vol. 24 No. 4 Fall 2007 Picea pungens ‘The Blues’ 2008 Collectors Conifer of the Year Full-size Selection Photo Credit: Courtesy of Stanley & Sons Nursery, Inc. CQ_FALL07_FINAL.qxp:CQ 10/16/07 1:45 PM Page 1 The Conifer Quarterly is the publication of the American Conifer Society Contents 6 Competitors for the Dwarf Alberta Spruce by Clark D. West 10 The Florida Torreya and the Atlanta Botanical Garden by David Ruland 16 A Journey to See Cathaya argyrophylla by William A. McNamara 19 A California Conifer Conundrum by Tim Thibault 24 Collectors Conifer of the Year 29 Paul Halladin Receives the ACS Annual Award of Merits 30 Maud Henne Receives the Marvin and Emelie Snyder Award of Merit 31 In Search of Abies nebrodensis by Daniel Luscombe 38 Watch Out for that Tree! by Bruce Appeldoorn 43 Andrew Pulte awarded 2007 ACS $1,000 Scholarship by Gerald P. Kral Conifer Society Voices 2 President’s Message 4 Editor’s Memo 8 ACS 2008 National Meeting 26 History of the American Conifer Society – Part One 34 2007 National Meeting 42 Letters to the Editor 44 Book Reviews 46 ACS Regional News Vol. 24 No. 4 CONIFER QUARTERLY 1 CQ_FALL07_FINAL.qxp:CQ 10/16/07 1:45 PM Page 2 PRESIDENT’S MESSAGE Conifer s I start this letter, we are headed into Afall. In my years of gardening, this has been the most memorable year ever. It started Quarterly with an unusually warm February and March, followed by the record freeze in Fall 2007 Volume 24, No 4 April, and we just broke a record for the number of consecutive days in triple digits.
    [Show full text]
  • Evaluating the Invasive Potential of an Exotic Scale Insect Associated with Annual Christmas Tree Harvest and Distribution in the Southeastern U.S
    Trees, Forests and People 2 (2020) 100013 Contents lists available at ScienceDirect Trees, Forests and People journal homepage: www.elsevier.com/locate/tfp Evaluating the invasive potential of an exotic scale insect associated with annual Christmas tree harvest and distribution in the southeastern U.S. Adam G. Dale a,∗, Travis Birdsell b, Jill Sidebottom c a University of Florida, Entomology and Nematology Department, Gainesville, FL 32611 b North Carolina State University, NC Cooperative Extension, Ashe County, NC c North Carolina State University, College of Natural Resources, Mountain Horticultural Crops Research and Extension Center, Mills River, NC 28759 a r t i c l e i n f o a b s t r a c t Keywords: The movement of invasive species is a global threat to ecosystems and economies. Scale insects (Hemiptera: Forest entomology Coccoidea) are particularly well-suited to avoid detection, invade new habitats, and escape control efforts. In Fiorinia externa countries that celebrate Christmas, the annual movement of Christmas trees has in at least one instance been Elongate hemlock scale associated with the invasion of a scale insect pest and subsequent devastation of indigenous forest species. In the Conifers eastern United States, except for Florida, Fiorinia externa is a well-established exotic scale insect pest of keystone Fraser fir hemlock species and Fraser fir Christmas trees. Annually, several hundred thousand Fraser firs are harvested and shipped into Florida, USA for sale to homeowners and businesses. There is concern that this insect may disperse from Christmas trees and establish on Florida conifers of economic and conservation interest. Here, we investigate the invasive potential of F.
    [Show full text]
  • Bunzo Hayata and His Contributions to the Flora of Taiwan
    TAIWANIA, 54(1): 1-27, 2009 INVITED PAPER Bunzo Hayata and His Contributions to the Flora of Taiwan Hiroyoshi Ohashi Botanical Garden, Tohoku University, Sendai 980-0962, Japan. Email: [email protected] (Manuscript received 10 September 2008; accepted 24 October 2008) ABSTRACT: Bunzo Hayata was the founding father of the study of the flora of Taiwan. From 1900 to 1921 Taiwan’s flora was the focus of his attention. During that time he named about 1600 new taxa of vascular plants from Taiwan. Three topics are presented in this paper: a biography of Bunzo Hayata; Hayata’s contributions to the flora of Taiwan; and the current status of Hayata’s new taxa. The second item includes five subitems: i) floristic studies of Taiwan before Hayata, ii) the first 10 years of Hayata’s study of the flora of Taiwan, iii) Taiwania, iv) the second 10 years, and v) Hayata’s works after the flora of Taiwan. The third item is the first step of the evaluation of Hayata’s contribution to the flora of Taiwan. New taxa in Icones Plantarum Formosanarum vol. 10 and the gymnosperms described by Hayata from Taiwan are exampled in this paper. KEY WORDS: biography, Cupressaceae, flora of Taiwan, gymnosperms, Hayata Bunzo, Icones Plantarum Formosanarum, Taiwania, Taxodiaceae. 1944). Wu (1997) wrote a biography of Hayata in INTRODUCTION Chinese as a botanist who worked in Taiwan during the period of Japanese occupation based biographies and Bunzo Hayata (早田文藏) [1874-1934] (Fig. 1) was memoirs written in Japanese. Although there are many a Japanese botanist who described numerous new taxa in articles on the works of Hayata in Japanese, many of nearly every family of vascular plants of Taiwan.
    [Show full text]
  • Abiotic Factors and Yushania Influences on Abies Forest Composition in Taiwan
    Taiwania, 59(3): 247‒261, 2014 DOI: 10.6165/tai.2014.59.247 RESEARCH ARTICLE Abiotic Factors and Yushania Influences on Abies Forest Composition in Taiwan Cheng-Tao Lin(1), Tzu-Ying Chen(2), Chang-Fu Hsieh(3) and Chyi-Rong Chiou(1*) 1. School of Forestry and Resource Conservation, National Taiwan University, No. 1, Sect. 4, Roosevelt Rd., Taipei, 10617, Taiwan. 2. Department of Forestry and Natural Resources, National Ilan University, Sect. 1, Shen-Lung Rd., Ilan, 26047, Taiwan. 3. Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sect. 4, Roosevelt Rd., Taipei, 10617, Taiwan. * Corresponding author. Tel.: +886-2-3366-4640; Fax: +886-2-2365-4520; Email: [email protected] (Manuscript received 20 March 2014; accepted 26 May 2014) ABSTRACT: Abies kawakamii forests are generally distributed above 3,000 m in Taiwanese high mountains. The community data used in our analysis were derived from the database of the National Vegetation Diversity Inventory and Mapping Project of Taiwan (NVDIMP), and environmental data were obtained from the WorldClim and NVDIMP databases. We used non-metric multidimensional scaling (NMDS) to identify vegetation composition of Abies communities and the structural equation models (SEMs) were used to examine the complex relationships between environmental factors and vegetation composition. The results of ordination showed the most important factors determining species composition of Abies forests involved habitat rockiness, heat load index, warmth index and summer and winter. SEM results approved the warmth index and winter precipitation were the main drivers determining the latent variable—climate, which significantly affect the overstory composition of Abies communities.
    [Show full text]
  • Red Spruce–Fraser Fir Forest (Low Rhododendron Subtype)
    RED SPRUCE–FRASER FIR FOREST (LOW RHODODENDRON SUBTYPE) Concept: The Low Rhododendron Subtype covers the lowest elevation examples of Red Spruce—Fraser Forest Forests, in moist, topographically sheltered sites. This subtype is transitional from spruce-fir forest to Acidic Cove Forest. Picea rubens dominates or codominates with other mesophytic trees and there is an evergreen shrub layer. Distinguishing Features: The Low Rhododendron Subtype is distinguished from other lower elevation Red Spruce—Fraser Fir Forests subtypes by the combination of sheltered concave topography with a dense shrub layer of Rhododendron maximum. The Birch Transition Shrub Subtype and Rhododendron Subtype may have abundant Rhododendron maximum but occur on convex topography such as ridges and have associated species of drier sites. Tsuga canadensis may be codominant in the canopy, and is more often present than in any other subtype. Synonyms: Picea rubens - (Tsuga canadensis) / Rhododendron maximum Forest (CEGL006152). Red Spruce Forest (Protected Slope Subtype) (NVC). Ecological Systems: Central and Southern Appalachian Spruce-Fir Forest (CES202.028). Sites: Sheltered slopes, valley heads, and ravines, at relatively low elevations. The elevational range is not well known, but examples are known down to near 4000 feet. Some examples occurs as downward extensions of spruce from extensive spruce-fir forests into upper valleys, while a few are anomalous occurrences in high valleys distant from other spruce-fir forests. Cold air drainage may be important for their occurrence at these low elevations. Soils: Soils are not well known for this subtype. Hydrology: Conditions are mesic due to topographic sheltering, but this subtype occurs below the elevation of frequent fog and high rainfall, and its water input may be much lower than higher elevation subtypes.
    [Show full text]
  • Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
    Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property.
    [Show full text]