Grasses and Bamboos of Barail Wildlife Sanctuary in Assam, India

Total Page:16

File Type:pdf, Size:1020Kb

Grasses and Bamboos of Barail Wildlife Sanctuary in Assam, India Pleione 11(2): 440 - 454. 2017. ISSN: 0973-9467 © East Himalayan Society for Spermatophyte Taxonomy doi:10.26679/Pleione.11.2.2017.440-454 Grasses and bamboos of Barail Wildlife Sanctuary in Assam, India Arpita Bora, Moonmee Devi and Debjyoti Bhattacharyya1 Plant Taxonomy & Biosystematics Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar 788 011. Assam, India. 1Corresponding Author, e-mail: [email protected] [Received 13.11.2017; Revised & accepted 25.11.2017; Published 31.12.2017] Abstract A total of 66 species (53 species of grasses and 13 species of bamboos) of Gramineae (Poaceae) are enumerated here from Barail Wildlife Sanctuary in Assam, India. These are distributed under 41 genera and 11 tribes. The study was based on fresh collection of specimens from the sanctuary during 2012 – 2014, consultation of herbarium specimens and scrutiny of literature. A list of species is provided with updated nomenclature, vernacular name(s), phenology, occurrences in the study area and habit. Field photographs of some selected members are also provided for ease of identification. Keywords: Barail Wildlife Sanctuary, Barak Valley, Cachar, Gramineae, Poaceae, Southern Assam. INTRODUCTION Grasses and bamboos, the members of Gramineae Juss., nom. cons. (Poaceae Barnhart, nom. cons. et nom. alt.), are very distinctive from other flowering plant species owing to their unique vegetative and floral morphology, habitat diversity and moreover for their immense economic importance. Gramineae is the fourth largest among the angiosperm families in terms of species diversity (Watson & Dalwitz 1994). According to Soreng et al. (2015), the family comprises of ±12074 species under 771 genera belonging to 51 tribes and 12 subfamilies in the world. Members of the family exhibit great variations in their vegetative and reproductive morphology and is of paramount importance to human economy mainly for food grains (cereals and millets). Apart from this, the forest grasses and bamboos are used as fodder, building materials, paper pulps, thatching materials and also used for making ropes, mats, brooms, musical instruments, agricultural and hunting materials, etc. (Rawat 2008). The family is monophyletic [Grass Phylogeny Working Group (GPWG) 2001; Soreng et al. 2015] and comprises mostly herbaceous species (grasses) to shrubs and tall trees (bamboos) with terete stem and paniculate inflorescence. They are easily recognizable morphologically by their spikelet inflorescence with two empty glumes and one to many lemmas; each lemma subtending a palea, presence of 2 – 3 lodicules, versatile anthers, feathery stigmas and caryopsis fruit type in most of the species. Grasses are cosmopolitan in distribution and they occupy various habitats like grassland, marshy and swampy areas of wetland ecosystems, savannas, deep and open forests, etc. They are mainly abundant in tropical to sub-tropical belt of the earth and extended up to Arpita Bora et al. 441 warm-temperate regions (Clayton & Renvoize 1986). On the other hand, bamboos also have a wide natural distribution pattern occurring between 460 N latitude to 470 S latitude with altitudinal ranges from sea-level up to 4300 m (http://www.eeob.iastate.edu/research/ bamboo/ index.html). In India, Gramineae is the largest angiosperm family representing c.1300 species under 263 genera and 25 tribes (Benjamin et al. 2012); of these, c. 430 taxa are endemic to the country (Jain 1986). Sampson et al. (2001) categorized India into two grass zones viz., (i) Temperate Himalayan region along with Indo-Gangetic plains and (ii) Tropical Peninsular region. Tropical Peninsular region of the country shows the highest grass diversity with a great extent of endemism, i.e., 55% of total endemic grasses of India (Sampson et al. 2001). Grasslands occupy about 3.9% of the total land area of India (Nair & Thomas 2001). In Assam, Gramineae was recorded as the largest family comprising of 303 species under 104 genera (Chowdhury 2005). N.L. Bor (1940) documented the grass flora of the then Assam for the first time. Shukla (1996) enumerated the grasses of Northeast India. Grasses and bamboos of southern Assam (popularly known as Barak Valley) attracted many botanists to work on these. Reports from the region were made by Hooker (1896), Gupta (1972), Majumder (1983), Malakar (1995), Bhattacharjee (2002), Sharma et al. (2002), Das and Dutta Choudhury (2003), Das et al. (2006, 2007, 2008, 2010, 2013), Das (2008), Nath and Das (2008), Barbhuiya et al. (2013), Baruah (2013), Baruah et al. (2013), Devi and Bhattacharyya (2013a, 2013b, 2013c, 2014, 2015, 2016) and Baruah and Dutta Choudhury (2014, 2015). Barail Wildlife Sanctuary (BWS) represents the sole wildlife sanctuary of the Barak Valley region of Assam. The area was declared and notified as Wildlife Sanctuary in June 2004 (Anonymous 2006). The present study was attempted to develop a comprehensive account on the diversity of grasses and bamboos in BWS by morpho-taxonomic investigation. The data presented here may act as baseline information of grasses and bamboos in the sanctuary which will be helpful for future monitoring, management and conservation of species. Study area Barail Wildlife Sanctuary (BWS) is located in Cachar district in the southern part of Assam (Barak Valley). BWS is divided into two administrative parts: (a) Barail Reserve Forest Table 1. Geographical and meteorological data of the Barail Wildlife Sanctuary [Source: Anonymous 2006] Latitude 24058ʹ – 2505ʹ N Longitude 92046ʹ – 92052ʹ E Area 326.24 sq. km Climate Humid tropical to sub-tropical Annual rainfall 200 cm to >600 cm Average humidity 72% to 90% Minimum temperature 80C Maximum temperature 380C Soil texture Sandy stony to clayey Altitudinal range < 100 m to 1867 m 442 Grasses and bamboos of Barail Wildlife Sanctuary Figure 1. Location map of Barali Wildlife Sanctuary (East block), and (b) North Cachar reserve forest (West Block) (Figure 1). Barail Reserve Forest is under Cachar Forest Division and North Cachar reserve forest is under Karimganj Forest Division. Table 1 shows the geographical and meteorological data of the sanctuary. As per the classification of Champion and Seth (1968), tropical wet evergreen to semi- evergreen forest types are prevalent in the sanctuary. Major portion of the sanctuary is virgin although there is human habitation in several villages (8 in East Block and 19 in West Block) located in and around the sanctuary (Anonymous 2006). BWS shows a very rich biodiversity owing to its unique geographical position, varied topography, high rainfall and tropical to subtropical climatic conditions (Anonymous 2006). Arpita Bora et al. 443 Figure 2. Bar diagram showing the number of taxa under each tribe MATERIALS AND METHODS The present study was based on field surveys conducted in different habitats of the Barail Wildlife Sanctuary during 2012 to 2014, scrutiny of literature and study of all accumulated herbarium specimens housed in ASSAM and CAL herbaria. Places surveyed during the study were: Bandarkhal, Bhaluknala, Damcherra, Durbintila, Indranagar, Malidar, Jatinga river bank, Kalain, Kayang river bank, Kumba, Lakhicherra, Madhura khuwari and Marwacherra. Collections were made throughout the year more particularly during pre- monsoon and post-monsoon seasons. Collection, poisoning, preservation and mounting of specimens were done following routine herbarium practices as recommended by Jain and Rao (1977) and Singh and Subramaniam (2008). After collection, the specimens were critically examined and the flowers were dissected under Olympus SZ61 Stereo Zoom Dissecting Microscope; finer structures were studied under Labomed Vision 2000 compound microscope. Identifications of taxa were done following relevant taxonomic keys available in authentic floras like Hooker (1896), Bor (1940, 1960), Sreekumar and Nair (1991), Shukla (1996) and Kabeer and Nair (2009). The identity of the collected specimens was further authenticated by comparing at ASSAM and CAL. In addition, type specimens were also studied for confirmation of identity of species. Digital images available in different foreign herbaria databases were consulted too. Collections made by the authors during present study (vouchers) have been deposited in the Herbarium of the Department of Life Science & Bioinformatics, Assam University, Silchar. Classification of Clayton and Renvoize (1986) was followed for arranging the taxa. Species under each genus is/are arranged alphabetically. All the taxa are provided with correct nomenclature which were updated following International Code of Nomenclature for algae, fungi, and plants (ICN) (McNeill et al. 2012), International Plant Names Index (IPNI) (http://www.ipni.org) and The Plant List (http:// www.theplantlist.org). The vernacular names and phenological data were compiled from the authors’ personal observations made during field studies after consulting local inhabitants in the peripheral villages of the sanctuary, existing literature and webpages (Ohrnberger 1999; Barooah & Ahmed 2014; Liese & Köhl 2015; Banik 2016; https://sites.google.com/ site/bamboosthailand/, https://www.cabi.org/isc/) and notes on earlier preserved herbarium sheets. All specimens examined have been annotated properly. Photographs provided here have been taken by the authors during field trips. 444 Grasses and bamboos of Barail Wildlife Sanctuary RESULTS The present floristic study in the Barail Wildlife Sanctuary revealed the occurrence of a total of 66 species (with 2 varieties) of grasses
Recommended publications
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • 24. Tribe PANICEAE 黍族 Shu Zu Chen Shouliang (陈守良); Sylvia M
    POACEAE 499 hairs, midvein scabrous, apex obtuse, clearly demarcated from mm wide, glabrous, margins spiny-scabrous or loosely ciliate awn; awn 1–1.5 cm; lemma 0.5–1 mm. Anthers ca. 0.3 mm. near base; ligule ca. 0.5 mm. Inflorescence up to 20 cm; spike- Caryopsis terete, narrowly ellipsoid, 1–1.8 mm. lets usually densely arranged, ascending or horizontally spread- ing; rachis scabrous. Spikelets 1.5–2.5 mm (excluding awns); Stream banks, roadsides, other weedy places, on sandy soil. Guangdong, Hainan, Shandong, Taiwan, Yunnan [Bhutan, Cambodia, basal callus 0.1–0.2 mm, obtuse; glumes narrowly lanceolate, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri back scaberulous-hirtellous in rather indistinct close rows (most Lanka, Thailand, Vietnam; Africa (probably introduced), Australia obvious toward lemma base), midvein pectinate-ciliolate, apex (Queensland)]. abruptly acute, clearly demarcated from awn; awn 0.5–1.5 cm. Anthers ca. 0.3 mm. Caryopsis terete, narrowly ellipsoid, ca. 3. Perotis hordeiformis Nees in Hooker & Arnott, Bot. Beech- 1.5 mm. Fl. and fr. summer and autumn. 2n = 40. ey Voy. 248. 1838. Sandy places, along seashores. Guangdong, Hebei, Jiangsu, 麦穗茅根 mai sui mao gen Yunnan [India, Indonesia, Malaysia, Nepal, Myanmar, Pakistan, Sri Lanka, Thailand]. Perotis chinensis Gandoger. This species is very close to Perotis indica and is sometimes in- Annual or short-lived perennial. Culms loosely tufted, cluded within it. No single character by itself is reliable for separating erect or decumbent at base, 25–40 cm tall. Leaf sheaths gla- the two, but the combination of characters given in the key will usually brous; leaf blades lanceolate to narrowly ovate, 2–4 cm, 4–7 suffice.
    [Show full text]
  • Arundinelleae; Panicoideae; Poaceae)
    Bothalia 19, 1:45-52(1989) Kranz distinctive cells in the culm of ArundineUa (Arundinelleae; Panicoideae; Poaceae) EVANGELINA SANCHEZ*, MIRTA O. ARRIAGA* and ROGER P. ELLIS** Keywords: anatomy, Arundinella, C4, culm, distinctive cells, double bundle sheath, NADP-me ABSTRACT The transectional anatomy of photosynthetic flowering culms of Arundinella berteroniana (Schult.) Hitchc. & Chase and A. hispida (Willd.) Kuntze from South America and A. nepalensis Trin. from Africa is described and illustrated. The vascular bundles are arranged in three distinct rings, the outermost being external to a continuous sclerenchymatous band. Each of these peripheral bundles is surrounded by two bundle sheaths, a complete mestome sheath and an incomplete, outer, parenchymatous Kranz sheath, the cells of which contain large, specialized chloroplasts. Kranz bundle sheath extensions are also present. The chlorenchyma tissue is also located in this narrow peripheral zone and is interrupted by the vascular bundles and their associated sclerenchyma. Dispersed throughout the chlorenchyma are small groups of Kranz distinctive cells, identical in structure to the outer bundle sheath cells. No chlorenchyma cell is. therefore, more than two cells distant from a Kranz cell. The structure of the chlorenchyma and bundle sheaths indicates that the C4 photosynthetic pathway is operative in these culms. This study clearly demonstrates the presence of the peculiar distinctive cells in the culms as well as in the leaves of Arundinella. Also of interest is the presence of an inner bundle sheath in the vascular bundles of the culm whereas the bundles of the leaves possess only a single sheath. It has already been shown that Arundinella is a NADP-me C4 type and the anatomical predictor of a single Kranz sheath for NADP-me species, therefore, either does not hold in the culms of this genus or the culms are not NADP-me.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • 22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
    POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia].
    [Show full text]
  • Chapter 5 Phylogeny of Poaceae Based on Matk Gene Sequences
    Chapter 5 Phylogeny of Poaceae Based on matK Gene Sequences 5.1 Introduction Phylogenetic reconstruction in the Poaceae began early in this century with proposed evolutionary hypotheses based on assessment of existing knowledge of grasses (e.g., Bew, 1929; Hubbard 1948; Prat, 1960; Stebbins, 1956, 1982; Clayton, 1981; Tsvelev, 1983). Imperical approaches to phylogenetic reconstruction of the Poaceae followed those initial hypotheses, starting with cladistic analyses of morphological and anatomical characters (Kellogg and Campbell, 1987; Baum, 1987; Kellogg and Watson, 1993). More recently, molecular information has provided the basis for phylogenetic hypotheses in grasses at the subfamily and tribe levels (Table 5.1). These molecular studies were based on information from chloroplast DNA (cpDNA) restriction sites and DNA sequencing of the rbcL, ndhF, rps4, 18S and 26S ribosomal DNA (rDNA), phytochrome genes, and the ITS region (Hamby and Zimmer, 1988; Doebley et al., 1990; Davis and Soreng, 1993; Cummings, King, and Kellogg, 1994; Hsiao et al., 1994; Nadot, Bajon, and Lejeune, 1994; Barker, Linder, and Harley, 1995; Clark, Zhang, and Wendel, 1995; Duvall and Morton, 1996; Liang and Hilu, 1996; Mathews and Sharrock, 1996). Although these studies have refined our concept of grass evolution at the subfamily level and, to a certain degree, at the tribal level, major disagreements and questions remain to be addressed. Outstanding discrepancies at the subfamily level include: 1) Are the pooids, bambusoids senso lato, or herbaceous bamboos the
    [Show full text]
  • Grasses of the Texas Hill Country: Vegetative Key and Descriptions
    Hagenbuch, K.W. and D.E. Lemke. 2015. Grasses of the Texas Hill Country: Vegetative key and descriptions. Phytoneuron 2015-4: 1–93. Published 7 January 2015. ISSN 2153 733X GRASSES OF THE TEXAS HILL COUNTRY: VEGETATIVE KEY AND DESCRIPTIONS KARL W. HAGENBUCH Department of Biological Sciences San Antonio College 1300 San Pedro Avenue San Antonio, Texas 78212-4299 [email protected] DAVID E. LEMKE Department of Biology Texas State University 601 University Drive San Marcos, Texas 78666-4684 [email protected] ABSTRACT A key and a set of descriptions, based solely on vegetative characteristics, is provided for the identification of 66 genera and 160 grass species, both native and naturalized, of the Texas Hill Country. The principal characters used (features of longevity, growth form, roots, rhizomes and stolons, culms, leaf sheaths, collars, auricles, ligules, leaf blades, vernation, vestiture, and habitat) are discussed and illustrated. This treatment should prove useful at times when reproductive material is not available. Because of its size and variation in environmental conditions, Texas provides habitat for well over 700 species of grasses (Shaw 2012). For identification purposes, the works of Correll and Johnston (1970); Gould (1975) and, more recently, Shaw (2012) treat Texas grasses in their entirety. In addition to these comprehensive works, regional taxonomic treatments have been done for the grasses of the Cross Timbers and Prairies (Hignight et al. 1988), the South Texas Brush Country (Lonard 1993; Everitt et al. 2011), the Gulf Prairies and Marshes (Hatch et al. 1999), and the Trans-Pecos (Powell 1994) natural regions. In these, as well as in numerous other manuals and keys, accurate identification of grass species depends on the availability of reproductive material.
    [Show full text]
  • Large Trees, Supertrees, and Diversification of the Grass Family Trevor R
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 19 2007 Large Trees, Supertrees, and Diversification of the Grass Family Trevor R. Hodkinson Trinity College, Dublin, Ireland Nicolas Salamin University of Lausanne, Lausanne, Switzerland Mark W. Chase Royal Botanic Gardens, Kew, UK Yanis Bouchenak-Khelladi Trinity College, Dublin, Ireland Stephen A. Renvoize Royal Botanic Gardens, Kew, UK See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hodkinson, Trevor R.; Salamin, Nicolas; Chase, Mark W.; Bouchenak-Khelladi, Yanis; Renvoize, Stephen A.; and Savolainen, Vincent (2007) "Large Trees, Supertrees, and Diversification of the Grass Family," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 19. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/19 Large Trees, Supertrees, and Diversification of the Grass Family Authors Trevor R. Hodkinson, Nicolas Salamin, Mark W. Chase, Yanis Bouchenak-Khelladi, Stephen A. Renvoize, and Vincent Savolainen This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol23/iss1/ 19 Aliso 23, pp. 248–258 ᭧ 2007, Rancho Santa Ana Botanic Garden LARGE TREES, SUPERTREES, AND DIVERSIFICATION OF THE GRASS FAMILY TREVOR R. HODKINSON,1,5 NICOLAS SALAMIN,2 MARK W. CHASE,3 YANIS BOUCHENAK-KHELLADI,1,3 STEPHEN A. RENVOIZE,4
    [Show full text]
  • Host Specificity of Ischnodemus Variegatus, an Herbivore of West
    BioControl DOI 10.1007/s10526-008-9188-3 Host specificity of Ischnodemus variegatus, an herbivore of West Indian marsh grass (Hymenachne amplexicaulis) Rodrigo Diaz Æ William A. Overholt Æ James P. Cuda Æ Paul D. Pratt Æ Alison Fox Received: 31 January 2008 / Accepted: 17 July 2008 Ó International Organization for Biological Control (IOBC) 2008 Abstract West Indian marsh grass, Hymenachne to suboptimal hosts occurred in an area where amplexicaulis Rudge (Nees) (Poaceae), is an emer- H. amplexicaulis was growing in poor conditions gent wetland plant that is native to South and Central and there was a high density of I. variegatus. Thus, America as well as portions of the Caribbean, but is laboratory and field studies demonstrate that considered invasive in Florida USA. The neotropical I. variegatus had higher performance on H. amplexi- bug, Ischnodemus variegatus (Signoret) (Hemiptera: caulis compared to any other host, and that suboptimal Lygaeoidea: Blissidae) was observed feeding on hosts could be colonized temporarily. H. amplexicaulis in Florida in 2000. To assess whether this insect could be considered as a specialist Keywords Blissidae Á Hemiptera Á Herbivore biological control agent or potential threat to native performance Á Host quality Á Poaceae and cultivated grasses, the host specificity of I. variegatus was studied under laboratory and field conditions. Developmental host range was examined Introduction on 57 plant species across seven plant families. Complete development was obtained on H. amplexi- West Indian marsh grass, Hymenachne amplexicaulis caulis (23.4% survivorship), Paspalum repens (0.4%), Rudge (Nees) (Poaceae), is a perennial emergent Panicum anceps (2.2%) and Thalia geniculata weed in wetlands of Florida USA and northeastern (0.3%).
    [Show full text]
  • (Poaceae: Panicoideae) in Thailand
    Systematics of Arundinelleae and Andropogoneae, subtribes Chionachninae, Dimeriinae and Germainiinae (Poaceae: Panicoideae) in Thailand Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Atchara Teerawatananon 2009 Research conducted under the supervision of Dr. Trevor R. Hodkinson School of Natural Sciences Department of Botany Trinity College University of Dublin, Ireland I Declaration I hereby declare that the contents of this thesis are entirely my own work (except where otherwise stated) and that it has not been previously submitted as an exercise for a degree to this or any other university. I agree that library of the University of Dublin, Trinity College may lend or copy this thesis subject to the source being acknowledged. _______________________ Atchara Teerawatananon II Abstract This thesis has provided a comprehensive taxonomic account of tribe Arundinelleae, and subtribes Chionachninae, Dimeriinae and Germainiinae of the tribe Andropogoneae in Thailand. Complete floristic treatments of these taxa have been completed for the Flora of Thailand project. Keys to genera and species, species descriptions, synonyms, typifications, illustrations, distribution maps and lists of specimens examined, are also presented. Fourteen species and three genera of tribe Arundinelleae, three species and two genera of subtribe Chionachninae, seven species of subtribe Dimeriinae, and twelve species and two genera of Germainiinae, were recorded in Thailand, of which Garnotia ciliata and Jansenella griffithiana were recorded for the first time for Thailand. Three endemic grasses, Arundinella kerrii, A. kokutensis and Dimeria kerrii were described as new species to science. Phylogenetic relationships among major subfamilies in Poaceae and among major tribes within Panicoideae were evaluated using parsimony analysis of plastid DNA regions, trnL-F and atpB- rbcL, and a nuclear ribosomal DNA region, ITS.
    [Show full text]
  • Investigation of Mitochondrial-Derived Plastome Sequences in the Paspalum Lineage (Panicoideae; Poaceae) Sean V
    Burke et al. BMC Plant Biology (2018) 18:152 https://doi.org/10.1186/s12870-018-1379-1 RESEARCH ARTICLE Open Access Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae) Sean V. Burke1* , Mark C. Ungerer2 and Melvin R. Duvall1 Abstract Background: The grass family (Poaceae), ca. 12,075 species, is a focal point of many recent studies that aim to use complete plastomes to reveal and strengthen relationships within the family. The use of Next Generation Sequencing technology has revealed intricate details in many Poaceae plastomes; specifically the trnI - trnL intergenic spacer region. This study investigates this region and the putative mitochondrial inserts within it in complete plastomes of Paspalum and other Poaceae. Results: Nine newly sequenced plastomes, seven of which contain an insert within the trnI - trnL intergenic spacer, were combined into plastome phylogenomic and divergence date analyses with 52 other species. A robust Paspalum topology was recovered, originating at 10.6 Ma, with the insert arising at 8.7 Ma. The alignment of the insert across Paspalum reveals 21 subregions with pairwise homology in 19. In an analysis of emergent self- organizing maps of tetranucleotide frequencies, the Paspalum insert grouped with mitochondrial DNA. Conclusions: A hypothetical ancestral insert, 17,685 bp in size, was found in the trnI - trnL intergenic spacer for the Paspalum lineage. A different insert, 2808 bp, was found in the same region for Paraneurachne muelleri. Seven different intrastrand deletion events were found within the Paspalum lineage, suggesting selective pressures to remove large portions of noncoding DNA. Finally, a tetranucleotide frequency analysis was used to determine that the origin of the insert in the Paspalum lineage is mitochondrial DNA.
    [Show full text]
  • Insights in the Evolution of Neotropical Bamboos
    Bol.Soc.Bot.Méx. 88:67-75 (2011) BIOGEOGRAFÍA BIOGEOGRAPHY AND DIVERGENCE TIME ESTIMATES OF WOODY BAMBOOS: INSIGHTS IN THE EVOLUTION OF NEOTROPICAL BAMBOOS EDUARDO RUIZ-SANCHEZ Instituto de Ecología, A. C. Actual adcription: University of California, Berkeley email: [email protected] Abstract: The Neotropical woody bamboos are a monophyletic lineage with three subtribes in the Bambusoideae: Arthrostyli- diinae, Chusqueinae and Guaduainae. The geographical distribution of these subtribes extends from Mexico, Central America, Caribbean Islands, to South America. In order to understand the biogeographical patterns and origin of these bamboos, a phy- logeny of Neotropical woody bamboos was first inferred. Then divergence time estimation of particular nodes using a Bayesian approach and ancestral area reconstruction using S-DIVA were performed. The results suggest a Miocene origin of Neotropical bamboos where the subtribe Chusqueinae was the oldest, followed by the Arthrostylidiinae and the Guaduinae. The ancestral area reconstruction indicated a complex scenario in which the ancestral area for Chusqueinae was Andean South America followed by multiple dispersal events to Atlantic Brazil and Mesoamerica. Overall, the results support the hypothesis of a South American ori- gin of the Neotropical woody bamboos, corroborated by the molecular dating, ancestral area reconstruction and the fossil record. Keywords: Andes, Atlantic forests, Mesoamerica, Neotropical woody bamboos, South America. Resumen: Los bambúes leñosos Neotropicales son un linaje monofilético dentro de Bambusoideae con tres subtribus: Arthro- stylidiinae, Chusqueinae y Guaduinae. La distribución geográfica de éstas va desde México, Centroamérica, Islas del Caribe hasta Sudamérica. Para entender los patrones biogeográficos y el origen de estos bambúes se realizó un análisis filogenético.
    [Show full text]