Miscellaneous Notes on the Bowerbirds Chlamydera Cerviniventris and C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nest, Egg, Incubation Behaviour and Parental Care in the Huon Bowerbird Amblyornis Germana
Australian Field Ornithology 2019, 36, 18–23 http://dx.doi.org/10.20938/afo36018023 Nest, egg, incubation behaviour and parental care in the Huon Bowerbird Amblyornis germana Richard H. Donaghey1, 2*, Donna J. Belder3, Tony Baylis4 and Sue Gould5 1Environmental Futures Research Institute, Griffith University, Nathan 4111 QLD, Australia 280 Sawards Road, Myalla TAS 7325, Australia 3Fenner School of Environment and Society, The Australian National University, Canberra ACT 2601, Australia 4628 Utopia Road, Brooweena QLD 4621, Australia 5269 Burraneer Road, Coomba Park NSW 2428, Australia *Corresponding author. Email: [email protected] Abstract. The Huon Bowerbird Amblyornis germana, recently elevated to species status, is endemic to montane forests on the Huon Peninsula, Papua New Guinea. The polygynous males in the Yopno Urawa Som Conservation Area build distinctive maypole bowers. We document for the first time the nest, egg, incubation behaviour, and parental care of this species. Three of the five nests found were built in tree-fern crowns. Nest structure and the single-egg clutch were similar to those of MacGregor’s Bowerbird A. macgregoriae. Only the female Huon Bowerbird incubated. Mean length of incubation sessions was 30.9 minutes and the number of sessions daily was 18. Diurnal incubation constancy over a 12-hour day was 74%, compared with a mean of ~70% in six other members of the bowerbird family. The downy nestling resembled that of MacGregor’s Bowerbird. Vocalisations of a female Huon Bowerbird at a nest with a nestling -
A Preliminary Risk Assessment of Cane Toads in Kakadu National Park Scientist Report 164, Supervising Scientist, Darwin NT
supervising scientist 164 report A preliminary risk assessment of cane toads in Kakadu National Park RA van Dam, DJ Walden & GW Begg supervising scientist national centre for tropical wetland research This report has been prepared by staff of the Environmental Research Institute of the Supervising Scientist (eriss) as part of our commitment to the National Centre for Tropical Wetland Research Rick A van Dam Environmental Research Institute of the Supervising Scientist, Locked Bag 2, Jabiru NT 0886, Australia (Present address: Sinclair Knight Merz, 100 Christie St, St Leonards NSW 2065, Australia) David J Walden Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia George W Begg Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia This report should be cited as follows: van Dam RA, Walden DJ & Begg GW 2002 A preliminary risk assessment of cane toads in Kakadu National Park Scientist Report 164, Supervising Scientist, Darwin NT The Supervising Scientist is part of Environment Australia, the environmental program of the Commonwealth Department of Environment and Heritage © Commonwealth of Australia 2002 Supervising Scientist Environment Australia GPO Box 461, Darwin NT 0801 Australia ISSN 1325-1554 ISBN 0 642 24370 0 This work is copyright Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist Requests and inquiries concerning reproduction -
Unlocking the Black Box of Feather Louse Diversity: a Molecular Phylogeny of the Hyper-Diverse Genus Brueelia Q ⇑ Sarah E
Molecular Phylogenetics and Evolution 94 (2016) 737–751 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Unlocking the black box of feather louse diversity: A molecular phylogeny of the hyper-diverse genus Brueelia q ⇑ Sarah E. Bush a, , Jason D. Weckstein b,1, Daniel R. Gustafsson a, Julie Allen c, Emily DiBlasi a, Scott M. Shreve c,2, Rachel Boldt c, Heather R. Skeen b,3, Kevin P. Johnson c a Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA b Field Museum of Natural History, Science and Education, Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA c Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA article info abstract Article history: Songbirds host one of the largest, and most poorly understood, groups of lice: the Brueelia-complex. The Received 21 May 2015 Brueelia-complex contains nearly one-tenth of all known louse species (Phthiraptera), and the genus Revised 15 September 2015 Brueelia has over 300 species. To date, revisions have been confounded by extreme morphological Accepted 18 September 2015 variation, convergent evolution, and periodic movement of lice between unrelated hosts. Here we use Available online 9 October 2015 Bayesian inference based on mitochondrial (COI) and nuclear (EF-1a) gene fragments to analyze the phylogenetic relationships among 333 individuals within the Brueelia-complex. We show that the genus Keywords: Brueelia, as it is currently recognized, is paraphyletic. Many well-supported and morphologically unified Brueelia clades within our phylogenetic reconstruction of Brueelia were previously described as genera. -
Standards for Ground Feeding Bird Sanctuaries
Global Federation of Animal Sanctuaries Standards For Ground Feeding Bird Sanctuaries Version: June 2013 ©2012 Global Federation of Animal Sanctuaries i Global Federation of Animal Sanctuaries – Standards for Ground Feeding Bird Sanctuaries Table of Contents INTRODUCTION 1 GFAS PRINCIPLES 1 ANIMALS COVERED BY THESE STANDARDS 1 STANDARDS UPDATES 2 GROUND FEEDING BIRD STANDARDS 3 GROUND FEEDING BIRD HOUSING 3 H-1. Types of Space and Size 3 H-2. Containment 5 H-3. Ground and Plantings 6 H-4. Gates and Doors 7 H-5. Shelter 8 H-6. Enclosure Furniture 8 H-7. Sanitation 9 H-8. Temperature, Humidity, Ventilation, Lighting 11 PHYSICAL FACILITIES AND ADMINISTRATION 12 PF-1. Overall Safety of Facilities 12 PF-2. Water Drainage and Testing 13 PF-3. Life Support 13 PF-4. Hazardous Materials Handling 13 PF-5. Security: Avian Enclosures 14 PF-6. Perimeter Boundary and Inspections, and Maintenance 14 PF-7. Security: General Safety Monitoring 15 PF-8. Insect and Rodent Control 15 PF-9. Record Keeping 16 PF-10. Animal Transport 16 NUTRITION REQUIREMENTS 18 N-1. Water 18 N-2. Diet 18 N-3. Food Presentation and Feeding Techniques 20 N-4. Food Storage 21 N-5. Food Handling 21 VETERINARY CARE 22 V-1. General Medical Program and Staffing 22 V-2. On-Site and Off-Site Veterinary Facilities 22 V-3. Preventative Medicine Program 23 V-4. Diagnostic Services, Surgical, Treatment and Necropsy Facilities 23 V-5. Quarantine and Isolation of Ground Feeding Birds 25 V-6. Medical Records and Controlled Substances 26 i Global Federation of Animal Sanctuaries – Standards for Ground Feeding Bird Sanctuaries V-7. -
Molecular Evolution and Functional Characterization of the Visual Pigment Proteins of the Great Bowerbird (Chlamydera Nuchalis) and Other Vertebrates
Molecular Evolution and Functional Characterization of the Visual Pigment Proteins of the Great Bowerbird (Chlamydera nuchalis) and Other Vertebrates by Ilke van Hazel A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Ilke van Hazel 2012 Molecular Evolution and Functional Characterization of the Visual Pigment Proteins of the Great Bowerbird (Chlamydera nuchalis) and Other Vertebrates Ilke van Hazel Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2012 Abstract Visual pigments are light sensitive receptors in the eye that form the basis of sensory visual transduction. This thesis presents three studies that explore visual pigment proteins in vertebrates using a number of computational and experimental methods in an evolutionary framework. The objective is not only to identify, but also to experimentally investigate the functional consequences of genetic variation in vertebrate visual pigments. The focus is on great bowerbirds (Chlamydera nuchalis), which are a model system in visual ecology due to their spectacular behaviour of building and decorating courtship bowers. There are 4 chapters: Chapter 1 introduces background information on visual pigments and vision in birds. Among visual pigment types, the short-wavelength-sensitive (SWS1) pigments have garnered particular interest due to the broad spectral range among vertebrates and the importance of UV signals in communication. Chapter 2 investigates the evolutionary history of SWS1 in vertebrates with a view toward its utility as a phylogenetic marker. Chapter 3 investigates SWS1 evolution and short-wavelength vision in birds, with particular focus on C. -
Birds of New Guinea Field Guide (Beehler Et Al
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Introduction The New Guinea Region Our region of coverage follows Mayr (1941: vi), who defined the natural region that encompasses the avifauna of New Guinea, naming it the “New Guinea Region.” It comprises the great tropical island of New Guinea as well as an array of islands lying on its continental shelf or immediately offshore. This region extends from the equator to latitude 12o south and from longitude 129o east to 155o east; it is 2,800 km long by 750 km wide and supports the largest remaining contiguous tract of old-growth humid tropical forest in the Asia-Pacific (Beehler 1993a). The Region includes the Northwestern Islands (Raja Ampat group) of the far west—Waigeo, Batanta, Salawati, Misool, Kofiau, Gam, Gebe, and Gag; the Aru Islands of the southwest—Wokam, Kobroor, Trangan, and others; the Bay Islands of Geelvink/Cenderawasih Bay—Biak-Supiori, Numfor, Mios Num, and Yapen; Dolak Island of south-central New Guinea (also known as Dolok, Kimaam, Kolepom, Yos Sudarso, or Frederik Hendrik); Daru and Kiwai Islands of eastern south-central New Guinea; islands of the north coast of Papua New Guinea (PNG)—Kairiru, Muschu, Manam, Bagabag, and Karkar; and the Southeastern (Milne Bay) Islands of the far southeast—Goodenough, Fergusson, Normanby, Kiriwina, Kaileuna, Wood- lark, Misima, Tagula/Sudest, and Rossel, plus many groups of smaller islands (see the endpapers for a graphic delimitation of the Region). -
An Inverse Relationship Between Decoration and Food Colour Preferences in Satin Bowerbirds Does Not Support the Sensory Drive Hypothesis
ANIMAL BEHAVIOUR, 2006, 72, 1125e1133 doi:10.1016/j.anbehav.2006.03.015 An inverse relationship between decoration and food colour preferences in satin bowerbirds does not support the sensory drive hypothesis GERALD BORGIA*† & JASON KEAGY† *Department of Biology, University of Maryland, College Park yDepartment of Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park (Received 20 September 2005; initial acceptance 25 October 2005; final acceptance 30 March 2006; published online 26 September 2006; MS. number: A10246) Male bowerbirds collect and decorate their bowers with coloured objects that influence female choice. A recent version of the sensory drive hypothesis claims that female food colour preferences have driven the evolution of female preferences for the colour of male display traits. This hypothesis predicts a positive correlation between male display and food colour preferences. A positive correlation between food and decoration preferences could also arise because of sensory biases built into bowerbirds or the environment. Here we test hypotheses that (1) male and female satin bowerbirds show well-defined food colour prefer- ences, (2) these preferences correlate with independently assessed preferences for bower decorations, and, in a cross-species comparison, (3) food items were used as the first bower decorations. We found that male and female satin bowerbirds, Ptilonorhynchus violaceus, preferentially use long wavelength and were colours as food items. Male decoration preferences were biased towards colours of short wavelength and were negatively correlated with food colour preferences. Our reconstruction of ancestral character states is most consistent with the hypothesis that the original bower decorations were inedible objects and were thus unlikely to have been dual-use traits that also functioned as food items. -
1 §4-71-6.5 List of Restricted Animals [ ] Part A: For
§4-71-6.5 LIST OF RESTRICTED ANIMALS [ ] PART A: FOR RESEARCH AND EXHIBITION SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Hirudinea ORDER Gnathobdellida FAMILY Hirudinidae Hirudo medicinalis leech, medicinal ORDER Rhynchobdellae FAMILY Glossiphoniidae Helobdella triserialis leech, small snail CLASS Oligochaeta ORDER Haplotaxida FAMILY Euchytraeidae Enchytraeidae (all species in worm, white family) FAMILY Eudrilidae Helodrilus foetidus earthworm FAMILY Lumbricidae Lumbricus terrestris earthworm Allophora (all species in genus) earthworm CLASS Polychaeta ORDER Phyllodocida FAMILY Nereidae Nereis japonica lugworm PHYLUM Arthropoda CLASS Arachnida ORDER Acari FAMILY Phytoseiidae 1 RESTRICTED ANIMAL LIST (Part A) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Iphiseius degenerans predator, spider mite Mesoseiulus longipes predator, spider mite Mesoseiulus macropilis predator, spider mite Neoseiulus californicus predator, spider mite Neoseiulus longispinosus predator, spider mite Typhlodromus occidentalis mite, western predatory FAMILY Tetranychidae Tetranychus lintearius biocontrol agent, gorse CLASS Crustacea ORDER Amphipoda FAMILY Hyalidae Parhyale hawaiensis amphipod, marine ORDER Anomura FAMILY Porcellanidae Petrolisthes cabrolloi crab, porcelain Petrolisthes cinctipes crab, porcelain Petrolisthes elongatus crab, porcelain Petrolisthes eriomerus crab, porcelain Petrolisthes gracilis crab, porcelain Petrolisthes granulosus crab, porcelain Petrolisthes japonicus crab, porcelain Petrolisthes laevigatus crab, porcelain Petrolisthes -
Evolution of Colorful Display
COMMENTARY doi:10.1111/j.1558-5646.2007.00051.x EVOLUTION OF COLORFUL DISPLAY Gerald Borgia,1 Brian Coyle, and P. B. Zwiers Department of Biology, University of Maryland, College Park, Maryland 20742-4415 1E-mail: [email protected] Received February 27, 2006 Accepted November 27, 2006 How the displays of bowerbirds have evolved has attracted widespread interest. Endler et al. (2005) analyzed color use in display in a subset of bowerbird species and generalized their results to all bowerbirds. Here we discuss problems with their analysis that calls into question their conclusions. For example, they state that bowerbirds do not use decorations that match their background, but this is not supported by their results. They reconstruct historical patterns of sexual dimorphism in plumage display using questionable methodology. The high lability of these display traits makes these reconstructions unreliable and, using accepted methods and acknowledging the lability problem, we were unable to support their conclusions. Their claim that plumage differences between sympatric species are due to character displacement is not supported by the available data. Their focus is on visual contrast as the cause for display color and we offer additional hypotheses that may contribute to explaining color use. We support studies of spectral analysis of display traits but urge greater care in using this information to reach conclusions about how colorful displays have evolved. KEY WORDS: Character displacement, character-state reconstruction, mate recognition, rapid evolution, sexual selection. Bowerbirds are widely known for their multifaceted sexual dis- logeny suggest the following sequence of events: (1) increase of plays including a bower, bower decorations, and dancing and vo- contrast under sexual selection; (2) onset of increased predation cal elements. -
Evolution of Bower Complexity and Cerebellum Size in Bowerbirds
Original Paper Brain Behav Evol 2005;66:62–72 Received: September 1, 2004 Returned for revision: September 21, 2004 DOI: 10.1159/000085048 Accepted after revision: January 3, 2005 Published online: April 25, 2005 Evolution of Bower Complexity and Cerebellum Size in Bowerbirds a–c d b Lainy B. Day David A. Westcott Deborah H. Olster a b Departments of Ecology, Evolution, and Marine Biology and Psychology, University of California, c Santa Barbara, Calif. , USA; Department of Zoology and Tropical Ecology, School of Tropical Biology, d James Cook University, Townsville , CSIRO Sustainable Ecosystems and Rainforest CRC, Atherton , Australia Key Words Introduction Birds Bowerbirds Cerebellum Hippocampus Sexual selection Males of the bowerbird family (Ptilonorhynchidae), except three monogamous species, build elaborate dis- play sites (bowers) used to entice females to mate [Mar- Abstract shall, 1954; Kusmierski et al., 1997]. Bower design ap- To entice females to mate, male bowerbirds build elabo- pears to have been sexually selected through female choice rate displays (bowers). Among species, bowers range in as females of several species are known to select mates complexity from simple arenas decorated with leaves to based at least partially on the quality of the bower or the complex twig or grass structures decorated with myriad number of particular items used to decorate the bower colored objects. To investigate the neural underpinnings [Borgia and Mueller, 1992; Madden, 2003a]. Each species of bower building, we examined the contribution of vari- of bowerbird has a particular bower style and preference ation in volume estimates of whole brain (WB), telen- for decorations of certain types or colors [Marshall, 1954; cephalon minus hippocampus (TH), hippocampus (Hp) Madden, 2003b]. -
Novitates No
AMERIICAN MUSEUM NOV ITATES PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CITY OF NEW YORK DECEMBER 12, 1952 NUMBER 1602 GEOGRAPHIC VARIATION AND PLUMAGES IN AUSTRALIAN BOWERBIRDS (PTILONORHYNCHIDAE) By ERNST MAYR AND KATE JENNINGS INTRODUCTION In view of the great recent interest in the biology of bower- birds, it is surprising how little is known about the taxonomy of the Australian species. The available accounts in the standard works are very confusing, since no difference is made in most of them between synonyms and valid subspecies. Furthermore, a study of individual variation, of the sequence of plumages, and of measurements is badly needed, as information on these matters is woefully inadequate in the existing literature. In fact, we know much more about the New Guinea species than about the most familiar Australian birds. The following account is based on the material in the American Museum of Natural History which includes the Rothschild and Mathews collections. Where this material proved inadequate, additional specimens were borrowed from the United States National Museum, the Chicago Natural History Museum, the Museum of Comparative Zoology, and the Academy of Natural Sciences of Philadelphia (including parts of the Gould Collec- tion). We greatly appreciate the kindness of the curators of these institutions in making this material available. Ailuroedus crassirostris Paykull GREEN CATBIRD The only two Australian subspecies of this Australo-Papuan species are so different from each other that they were listed as 2 AMERICAN MUSEUM NOVITATES NO. 1602 two species in most of the older literature. However, their essential similarity, the agreement of habits, and the basic dif- ference from buccoides (New Guinea), the only other species of the genus, make it evident that crassirostris Paykull, 1815 (=viridis Vieillot, 1817), and maculosus Ramsay, 1875, must be considered as conspecific. -
Shannon Carson Bentz Directed By
ABSTRACT Title of Thesis: ALLOMETRIC COMPARISON OF BRAIN STRUCTURE VOLUMES IN THREE SPECIES OF BOWERBIRD: SATIN BOWERBIRDS (PTILONORHYNCHUS VIOLACEUS), SPOTTED BOWERBIRDS (CHLAMYDERA MACULATA), AND GREEN CATBIRDS (AILUROEDUS CRASSIROSTRIS). Shannon Carson Bentz Directed By: Professor Steven Brauth, Department of Psychology In three species of Australian bowerbirds the volumes of several brain structures were determined based on areal measurements of fixed tissue. Allometric comparisons, i.e., those that take into account the gross interspecies and intersexual differences in body mass and overall size, were made among these three species. Sexual dimorphisms were detected in the vocal control nuclei of each species. Most intriguingly, a putatively novel nucleus in the dorsal hyperstriatum of all three species has been identified. These findings are discussed in a functional context, in which the bower-building habits of these three species of bowerbird are considered. ALLOMETRIC COMPARISON OF BRAIN STRUCTURE VOLUMES IN THREE SPECIES OF BOWERBIRD: SATIN BOWERBIRDS (PTILONORHYNCHUS VIOLACEUS), SPOTTED BOWERBIRDS (CHLAMYDERA MACULATA), AND GREEN CATBIRDS (AILUROEDUS CRASSIROSTRIS). By Shannon Carson Bentz Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2005 Advisory Committee: Professor Steven Brauth, Chair Professor Gerald Borgia Assistant Professor Todd Troyer © Copyright by Shannon Carson Bentz 2005 Dedication To Saskia. ii Acknowledgements This work was supported in part by training grant DC- 00046 from the National Institute of Deafness and Communicative Disorders of the National Institutes of Health and by a grant from the University of Maryland Center for Neuroscience. iii Table of Contents Dedication............................................