Shale Hollow Park Bioblitz
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arachnids (Excluding Acarina and Pseudoscorpionida) of the Wichita Mountains Wildlife Refuge, Oklahoma
OCCASIONAL PAPERS THE MUSEUM TEXAS TECH UNIVERSITY NUMBER 67 5 SEPTEMBER 1980 ARACHNIDS (EXCLUDING ACARINA AND PSEUDOSCORPIONIDA) OF THE WICHITA MOUNTAINS WILDLIFE REFUGE, OKLAHOMA JAMES C. COKENDOLPHER AND FRANK D. BRYCE The Wichita Mountains are located in eastern Greer, southern Kiowa, and northwestern Comanche counties in Oklahoma. Since their formation more than 300 million years ago, these rugged mountains have been fragmented and weathered, until today the highest peak (Mount Pinchot) stands only 756 meters above sea level (Tyler, 1977). The mountains are composed predominantly of granite and gabbro. Forests of oak, elm, and walnut border most waterways, while at elevations from 153 to 427 meters prair ies are the predominant vegetation type. A more detailed sum mary of the climatic and biotic features of the Wichitas has been presented by Blair and Hubbell (1938). A large tract of land in the eastern range of the Wichita Moun tains (now northeastern Comanche County) was set aside as the Wichita National Forest by President McKinley during 1901. In 1905, President Theodore Roosevelt created a game preserve on those lands managed by the Forest Service. Since 1935, this pre serve has been known as the Wichita Mountains Wildlife Refuge. Numerous papers on Oklahoma spiders have been published (Bailey and Chada, 1968; Bailey et al., 1968; Banks et al, 1932; Branson, 1958, 1959, 1966, 1968; Branson and Drew, 1972; Gro- thaus, 1968; Harrel, 1962, 1965; Horner, 1975; Rogers and Horner, 1977), but only a single, comprehensive work (Banks et al., 1932) exists covering all arachnid orders in the state. Further additions and annotations to the arachnid fauna of Oklahoma can be found 2 OCCASIONAL PAPERS MUSEUM TEXAS TECH UNIVERSITY in recent revisionary studies. -
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
Lathys Stigmatisata (Menge, 1869), Ballus Rufipes (Simon, 1868), Synageles Hilarulus (C.L
Lathys stigmatisata (Menge, 1869), Ballus rufipes (Simon, 1868), Synageles hilarulus (C.L. Koch, 1846), Phrurolithus nigrinus (Simon, 1878) and Phycosoma inornatum (O. Pickard-Cambridge, 1861): five spiders new to the fauna of Luxembourg (Araneae: Theridiidae, Dyctiniidae, Phrurolithidae, Salticidae) with records of other rare species Raoul Gerend 35, rue de Hellange L-3487 Dudelange, Luxembourg ([email protected]) Gerend, R., 2020. Lathys stigmatisata (Menge, 1869), Ballus rufipes(Simon, 1868), Synageles hilarulus (C.L. Koch, 1846), Phrurolithus nigrinus (Simon, 1878) and Phycosoma inornatum (O. Pickard-Cambridge, 1861): five spiders new to the fauna of Luxembourg (Araneae: Theridiidae, Dyctiniidae, Phrurolithidae, Salticidae) with records of other rare species. Bul- letin de la Société des naturalistes luxembourgeois 122 : 211-215. Published online 26 August 2020 (ISSN 2716-750X). Abstract. Five spider species are recorded for the first time from Luxembourg. Their habi- tats are described. New data are presented for another three species. The importance of the former open-cast iron ore quarries of southwestern Luxembourg for thermophilous spiders is emphasised. 1. Introduction 2. Material and methods The first catalogue of the spider fauna of Lux- Spiders were collected using a range of con- embourg published in 2019 (Kreuels et al.) ventional methods which shall be specified lists 495 species while the authors estimate in the respective species’ paragraph. The that roughly 600 to 700 species should rea- spiders were then preserved in 70% isopro- sonably be expected to occur in the Grand- panol or 70% ethanol. All the material is Duchy. They consider Luxembourg’s spider kept in the author’s collection. Identifica- fauna to be rather under-recorded, due to a tions are based on Roberts (1996), Bee et lack of systematic collecting throughout the al. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
The Jumping Spiders (Araneae: Salticidae) of the Virginia Peninsula1
Vol. 98, No. 5, November & December 1987 235 THE JUMPING SPIDERS (ARANEAE: SALTICIDAE) OF THE VIRGINIA PENINSULA 1 2 C.L. Stietenroth, N.V. Horner ABSTRACT: Thirty species representing 1 8 genera of Salticidae are recorded from the Virginia Peninsula. Habitat and natural history information for each species is presented. Some salticids on the peninsula occupy diverse habitats while other species appear to confine themselves to more restricted environments. The most abundant salticid was Hentzia palmarum. Metaphi- dippus galathea and Platycryptus undatus were most widely distributed species. Salticids reported in Virginia for the first time are Phidippus princeps, P. otiosus, Thiodina sylvana, Sitticus fasciger and Zygoballus sexpunctatus. A few studies concerning the spider fauna of Virginia have been published. The earliest record of occurrence was by John Banister between 1678 and 1692 (Ewan and Ewan, 1970). More recently, McCaffrey and Hornsburgh published three studies concerning spiders in apple orchards in central Virginia. Their assessment of spider populations in an unsprayed orchard was published in 1 1 977 followed ( 978) by laboratory feeding studies performed to evaluate potential effects of predaceous spiders on insect residents of apple orchards. Later (1980), a comparison was made between the spider populations in abandoned and commercial orchards; 68 species were identified. Dowd and Kok (1981), and McPherson el al. (1982) considered spider and other arthropod predation on the curculionid beetle, Rhynocyllus sp., in a in 1 soybean cropping system Virginia. Holsinger ( 982) reported on the spider cave-fauna in Burnsville Cove. The efficiency of limb-beating for capturing various spider families in apple orchards is discussed by McCaffrey and Parrella(1984). -
Visual Reactions to Auditory Stimulus by the Jumping Spider Phidippus Princeps (Araneae, Salticidae)
Visual reactions to auditory stimulus by the jumping spider Phidippus princeps (Araneae, Salticidae) Philip Denbaum Degree project in biology, Master of science (2 years), 2019 Examensarbete i biologi 45 hp till masterexamen, 2019 Biology Education Centre, Uppsala University, and Elizabeth Jakob lab, University of Massachusetts Supervisors: Elizabeth Jakob and Anders Berglund External opponent: Emilie Laurent & Julian Baur Table of contents Abstract 2 Introduction 3 Methods and Materials 5 Spider collection and care 5 General experimental setup 5 Overview of the eyetracker 5 Securing the spider 6 Aligning spider and finding retinas 6 Experiment 7 Data analysis 8 Statistical analyses 9 Results 10 Analysis 1 10 Analysis 2 13 Discussion 14 Future studies 15 Conclusions 16 Acknowledgements 16 References 17 Appendix 19 !1 Abstract Jumping spiders (Family Salticidae) are known for their exceptional vision, including color vision and spatial acuity. Salticids use their vision in many behaviors, including predation and courtship. Recently evidence of their ability to sense airborne vibrations, i.e. sound, was published. I used a specialized jumping-spider-specific eyetracker to study the visual reaction of the retinas of the jumping spider Phidippus princeps when exposed to the sound of a predator. I used a generic wasp sound, previously shown to induce a startle response, as stimulus and played it from different directions. The spiders showed strong reactions to the sound stimulus by large increases in retinal movement when exposed to the stimulus, and they showed no habituation to the stimulus over three rounds of exposure. However, I found no indication that the direction of retinal movement corresponded to the location of the sound source. -
Shale Hollow Preserve Bio Blitz May 15-16, 2015
Shale Hollow Preserve Bio Blitz May 15-16, 2015 SCIENTIFIC NAME COMMON NAME Terrestrial Insect Vanessa atalanta Red Admiral Cicindela sexguttata Tiger Beetle Malacosoma americanum Eastern Tent Caterpillar Pieris rapae Cabbage White Lycaena hyllus Bronze Copper Papilio glaucus Eastern Tiger Swallowtail Epargereus clarus Silver-spotted Skipper Cicindela sexguttata Six-spotted Tiger Beetle Phyciodes tharos Pearl Crescent Nicrophorus orbicollis Roundneck Sexton Beetle Aquatic Macroinvertebrates Allocapnia spp. Stonefly Nymph Aquatic Invertebrates Sphaeriidae spp. Fingernail Clam Phreatoious spp. Freshwater Isopod Limnephilus spp. Northern Caddisfly Mammals Sciurus carolinensis Eastern Gray Squirrel Sciurus niger Fox Squirrel Microtus pennsylvanicus Meadow Vole Odocoileus virginianus White-tailed Deer Tamias striatus Eastern Chipmunk Amphibians Anaxyrus americanus American Toad Desmognathus fuscus Dusky Salamander Hyla versicolor Gray Tree Frog Lithobates clamitans Green Frog Eurycea bislineata Northern Two - lined Salamander Plethodon cinereus Red-backed Salamander Woody Plants Cornus alternifolia Alternate-leaved Dogwood Cornus florida Flowering Dogwood Gaylussacia baccata Black Huckleberry Prunus serotina Black Cherry Rosa multiflora Multiflora Rose Lonicera spp. Bush Honey Suckle Acer sacchrum Sugar Maple Ulmus americana American elm Ligustrum vulgare Common privet Berberis vulgaris European barberry Smilax spp. Greenbrier Lendara benzoin Common Spicebush Viburnum lentago Nannyberry Viburnum Rubus idaeus Red Rasberry Hamamelis virginiana -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas. -
Synanthropic Salticidae of the Northeast United States
PECKHAMIA 64.1, 8 September 2008 ISSN 1944-8120 This is a PDF version of PECKHAMIA 2(6): 91-92, December 1990. Pagination of the original document has been retained. Editor's note (64.1): Euophrys erratica is now known as Pseudeuophrys erratica (Zabka, M., 1997, Fauna Polski 19: 5-187), Habrocestum pulex as Naphrys pulex (Edwards, G. B., 2002, Insecta Mundi 16(1-3): 65-74). and Metaphidippus canadensis as Ghelna canadensis (Maddison, W. P., 1996, Bull. Mus. Comp. Zool. 154(4): 215-368). 91 SYNANTHROPIC SALTICIDAE OF THE NORTHEAST UNITED STATES Bruce Cutler 1966 Eustis St., Lauderdale, MN 55113 This paper is based on my collecting experience primarily in New York, New Jersey, northern Illinois, and Minnesota, with lesser collecting in Wisconsin and Michigan. There is some input from the observations of others, and from the literature. Kaston (1983) has a useful summary of other observations. I have divided the synanthropic species into different categories based on mode of occurrence and probable area of origin. The first group of species is what are considered to be the classic examples of synanthropic species. That is, nonnative species exclusively associated with human structures. There are two widespread species in this region. Salticus scenicus (Clerck) was undoubtedly introduced from western Europe, and occurs in every metropolitan area in the northeast United States, and in many small towns as well. In some places, it has spread to non-synanthropic habitats. Except for scattered records from trees (i. e. Jennings and Collins 1987), the rest are from bare rock areas- rocky shores of Lake Superior in the Upper Peninsula of Michigan, limestone cliffs in the Twin cities of Minnesota, and on a quartzite ridge in southwest Minnesota. -
New Species and Records of the Spider Families Pholcidae, Uloboridae, Linyphiidae, Theridiidae, Phrurolithidae, and Thomisidae (Araneae) from Korea
Journal of Species Research 7(4):251-290, 2018 New species and records of the spider families Pholcidae, Uloboridae, Linyphiidae, Theridiidae, Phrurolithidae, and Thomisidae (Araneae) from Korea Bo Keun Seo* Major in Biological Sciences, Keimyung University, Daegu 42601, Korea *Correspondent: [email protected] A new genus and 28 new species are described: Collis n. gen. (type species Collis flavus n. sp.), Pholcus jindongensis n. sp., Pholcus piagolensis n. sp., Pholcus pyeongchangensis n. sp., Pholcus seorakensis n. sp., Pholcus uiseongensis n. sp., Octonoba bicornuta n. sp., Cnephalocotes ferrugineus n. sp., Diplocephaloides falcatus n. sp., Metopobactrus cornis n. sp., Pelecopsis bigibba n. sp., Pelecopsis brunea n. sp., Pelecopsis montana n. sp., Tapinocyba parva n. sp., Tapinocyba subula n. sp., Walckenaeria supercilia n. sp., Agyneta furcula n. sp., Arcuphantes chiakensis n. sp., Arcuphantes chilboensis n. sp., Arcuphantes longiconvolutus n. sp., Arcuphantes namweonensis n. sp., Arcuphantes pennatoides n. sp., Arcuphantes pyeongchangensis n. sp., Collis pusillus n. sp., Collis silvaticus n. sp., Doenitzius minutus n. sp., Nippononeta bituberculata n. sp., and Phrurolithus pennatoides n. sp. Seven species are new to Korea: Hylyphantes nigritus (Simon, 1881), Hypselistes australis Saito and Ono, 2001, Diplostyla concolor (Wider, 1834), Agyneta insulana Tanasevitch, 2000, Phoroncidia altiventris Yoshida, 1985, Theridula iriomotensis Yoshida, 2001, and Xysticus audax (Schrank, 1803). Keywords: Linyphiidae, Pholcidae, Phrurolithidae, Theridiidae, Thomisidae, Uloboridae Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.4.251 INTRODUCTION pore) and digital camera (Leica DFC 420). Some micro- scopic images were stacked using image stacking soft- Twenty-seven species of the pholcid spider genus ware (i-Solution, Future Science Co. -
Research Article ISSN 2336-9744 (Online) | ISSN 2337-0173 (Print) the Journal Is Available on Line At
Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em https://zoobank.org/urn:lsid:zoobank.org:pub:D0D5B9BA-68A7-4047-B9A3-0B743BB0C288 New Phrurolithus species from China (Araneae, Phrurolithidae) LINA FU 1, HUIMING CHEN 2 & FENG ZHANG 1* 1The Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, P. R. China 2Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China *Corresponding author. E-mail: [email protected] Received 19 June 2016 │ Accepted 24 July 2016 │ Published online 30 July 2016. Abstract Seven new spider species of the genus Phrurolithus C. L. Koch, 1839 are reported from China: P. celatus sp. nov. (♀♂), P. lasiolepis sp. nov. (♀♂), P. longus sp. nov. (♀♂), P. subannulus sp. nov. (♀♂), P. taoyuan sp. nov. (♀ ♂), P. validus sp. nov. (♀♂) and P. subnigerus sp. nov. (♀ ♂). Morphological illustrations, photos and descriptions of all new species are presented. Key words: spider, taxonomy, Phrurolithus, China. Introduction The sac spider family Phrurolithidae Banks 1892, elevated to family status by Ramírez (2014), currently consists of 207 species, 14 genera worldwide (World Spider Catalog 2016), and about 65 species in four genera have been found in China (Li & Wang 2015). They are hunting spiders living on the ground, and are usually found in leaf litter, woody debris or on the forest floor. The genus Phrurolithus was established by C. L. Koch (1839) based on two Palaearctic species, P. festivus (C.L. Koch, 1835) and P. minimus C.L. Koch, 1839. Phrurolithus, the most species-rich genus of Phrurolithidae (World Spider Catalog 2016), is recorded from Europe, Asia and North America (Holarctic). -
Spiders of Alberta: from Agelenidae to Uloboridae
Spiders of Alberta: from Agelenidae to Uloboridae Dr. Heather Proctor University of Alberta for the Edmonton Nature Club, 7 Feb 2019 (selected slides for posting; photos (c) H. Proctor unless otherwise noted) Canadian and Albertan diversity • 1477 species of spiders in 45 families known from Canada – may be up to 1800 spp. • 657 species in 28 families known from Alberta 631 of the 657 species are included here from https://www.albertaparks.ca/media/6255191/list-of-elements-ab-invertebrates-spiders.xlsx The 28 families of spiders known from Alberta • no mygalomorph spiders in AB, only araneomorph • Division Synspermiata – Pholcioidea: Pholcidae, Telemidae • Division Entelegynae – Araneoidea: Theridiidae, Araneidae, Linyphiidae, Mysmenidae, Mimetidae, Tetragnathidae – Uloboroidea: Uloboridae – Titanoecoidea: Titanoecidae – Amaurobioidea: Amaurobiidae – Desoidea: Desidae – Agelenoidea: Dictynidae, Cybaeidae, Hahniidae, Agelenidae – Lycosoidea: Oxyopidae, Thomisidae, Pisauridae, Lycosidae – Salticoidea: Salticidae, Philodromidae, Corinnidae, Eutichuridae – Anyphaenoidea: Anyphaenidae, Clubionidae – Liocranoidea: Liocranidae – Trochanteroidea: Phrurolithidae, Gnaphosidae mygalomorphs from BC, Antrodiaetus sp. Linyphiidae 261 Gnaphosidae 51 Lycosidae 50 Salticidae 45 Number of species known Dictynidae 36 from each family in Alberta Thomisidae 37 Theridiidae 36 (based on Robb Bennett’s Araneidae 32 personal list, 7 Feb 2019) Philodromidae 29 Clubionidae 17 Tetragnathidae 14 Hahniidae 10 Amaurobiidae 7 Agelenidae 6 Corinnidae 3 Phrurolithidae