Local Numerical Modelling of Magnetoconvection and Turbulence - Implications for Mean-field Theories

Total Page:16

File Type:pdf, Size:1020Kb

Local Numerical Modelling of Magnetoconvection and Turbulence - Implications for Mean-field Theories Local numerical modelling of magnetoconvection and turbulence - implications for mean-field theories Petri J. K¨apyl¨a Department of Astronomy, Faculty of Science University of Helsinki Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium XII on 13th October 2006, at 12 o’clock noon. Helsinki 2006 ISBN 952-10-3396-7 (paperback) ISBN 952-10-3397-5 (pdf) Helsinki 2006 Yliopistopaino Acknowledgements First, I would like to acknowledge the financial support from the Magnus Ehrnrooth foundation and the Finnish Graduate School for Astronomy and Space Physics during the thesis work. Furthermore, the Kiepenheuer-Institut f¨ur Sonnenphysik, DFG gradu- ate school “Nonlinear Differential Equations: Modelling, Theory, Numerics, Visualisa- tion”, and the Academy of Finland grant No. 1112020 are acknowledged for providing travel support. The hospitality of Observatoire Midi-Pyr´en´ees in Toulouse and Nordita in Copenhagen during my numerous visits is also acknowledged. Secondly, I wish to thank my supervisors, Dr. Maarit Korpi and Prof. Ilkka Tuominen for their invaluable help, ideas, and support during the thesis work. Furthermore, Prof. Michael Stix, whose knowledge, experience and integrity I greatly admire, deserves spe- cial thanks. I also wish to thank my collaborators Dr. Mathieu Ossendrijver for his help on various problems on physics and numerics, and Prof. Axel Brandenburg for discussions about life, universe and everything (among other things). Majority of the research for this thesis was done while I was staying at the Kiepenheuer- Institut f¨ur Sonnenphysik (KIS) in Freiburg. I wish to thank the staff of KIS for provid- ing a relaxed atmosphere for research and for the occasional movie- and football-related activities during my stay. Special thanks go to Tayeb Aiouaz, Christian Beck, Christian Bethge, Sven Bingert, Peter Caligari, Wolfgang Dobler, Christian Hupfer, Lars Krieger, Daniel M¨uller, Reza Rezaei, Markus Roth, Rolf Schlichenmaier, and Oskar Steiner, some of whom have already moved on from the KIS. I also wish to thank friends I made in Oulu (many of whom are no longer there) Altti, Antti I., Antti S. & Susanna, Arto & Silva, Heidi & Michael, Jouni, Kerttu, Klaus, Marko, Pertti, Petri, Raine, and Satu. Furthermore, I thank Aku and Mikko, my friends since childhood. Very special thanks to my parents Veijo and Raija and to my sisters Tiina and Katri for their patience and support during my studies. iii Included publications The publications included in this dissertation are: Paper I: Brandenburg, A., K¨apyl¨a, P. J. & Mohammed, A. (2004), ‘Non-Fickian dif- fusion and tau approximation from numerical turbulence’, Physics of Fluids, 16, 1020 Paper II: K¨apyl¨a, P. J., Korpi, M. J. & Tuominen, I. (2004), ‘Local models of stellar convection: Reynolds stresses and turbulent heat transport’, Astronomy & Astrophysics, 422, 793 Paper III: K¨apyl¨a, P. J., Korpi, M. J., Stix, M. & Tuominen, I. (2005), ‘Local models of stellar convection II: Rotation dependence of the mixing length relations’, Astronomy & Astrophysics, 438, 403 Paper IV: K¨apyl¨a, P. J., Korpi, M. J., Ossendrijver, M. & Tuominen, I. (2006), ‘Lo- cal models of stellar convection III: The Strouhal Number’, Astronomy & Astrophysics, 448, 433 Paper V: K¨apyl¨a, P. J., Korpi, M. J., Ossendrijver, M. & Stix, M. (2006), ‘Magne- toconvection and dynamo coefficients III: α-effect and magnetic pumping in the rapid rotation regime’, Astronomy & Astrophysics, 455, 401 Paper VI: K¨apyl¨a, P. J., Korpi, M. J., & Tuominen, I. (2006), ‘Solar dynamo models with α-effect and turbulent pumping from local 3D convection calculations’, Astronomis- che Nachrichten (in press) v Contents Acknowledgements iii Included publications v 1 Introduction 1 2 Convection and turbulence in late-type stars 3 2.1Principlesofstellarconvection....................... 3 2.1.1 Stability criterion . ..................... 3 2.1.2 Convectioninmainsequencestars................. 4 2.2Viscosityandresistivityinstellarconvectionzones............ 5 2.3Emergenteffectsofturbulentconvection.................. 6 2.3.1 Differentialrotationandmeridionalcirculation.......... 6 2.3.2 Heattransport............................ 9 2.3.3 Penetrationandovershooting.................... 10 2.3.4 Magnetism.............................. 11 3 Mean-field magnetohydrodynamics 15 3.1Basicsofthemean-fieldtheory....................... 15 3.1.1 Firstordersmoothingapproximation(FOSA)........... 16 3.1.2 Minimaltauapproximation(MTA)................. 17 3.2Angularmomentumtransport........................ 18 3.2.1 ReynoldsstressesandtheΛ-effect................. 19 3.2.2 Meridionalcirculation........................ 21 3.3Convectiveheattransport.......................... 22 3.3.1 Themixinglengthconcept..................... 23 3.4Magneticfieldgeneration.......................... 25 4 Modelling 29 4.1Turbulencemodel............................... 29 4.2Convectionmodel............................... 30 4.2.1 Geometryandgoverningequations................. 30 4.2.2 Boundary conditions and dimensionless quantities . .... 32 4.2.3 Dimensionlessparameters...................... 33 4.2.4 Stratification............................. 34 4.2.5 Thenumericalmethod........................ 35 4.3Limitationsofthenumericalapproach................... 35 vii 4.3.1 Comparisonofnumericalmodelstorealstars........... 37 4.4Axisymmetricmean-fielddynamomodel.................. 39 5Results 41 5.1Passivescalartransport:FOSAorMTA?................. 41 5.2Strouhalnumberforconvection....................... 44 5.3Convectiveangularmomentumtransport................. 47 5.3.1 Effectsofshear............................ 51 5.3.2 Effectsofanimposedmagneticfield................ 52 5.4Convectiveheattransport.......................... 53 5.5Effectsofrotationonthemixinglengthrelations............. 55 5.6 Convective α-effect and turbulent pumping in the rapid rotation regime 58 5.6.1 The α-effectandkinetichelicity.................. 58 5.6.2 Turbulentpumpingofmeanmagneticfields............ 61 5.6.3 ComparisontoFOSA........................ 63 5.6.4 Representative results from axisymmetric mean-field models . 65 6 Conclusions and further work 71 Bibliography 74 Paper I 91 Paper II 101 Paper II 127 Paper IV 137 Paper V 145 Paper VI 159 Publications not included in the thesis 172 viii Chapter 1 Introduction Solar and stellar observations reveal a multitude of complex phenomena that are related to the outer convection zones of those stars. The most prominent emergent effects of convection are the differential rotation and large-scale magnetic fields, strikingly visible from the solar surface. In the longer term, the 11 year sunspot cycle and the grand minima seen in the sunspot number are the most well-known examples of solar activity. During the past decade or so, the surface features of a variety of other active late-type stars, discernible with the Doppler imaging technique, have also been obtained. These stars are usually more rapid rotators and exhibit starspot distributions and cycles that are significantly different from those of the Sun: the large scale magnetic fields are highly non-axisymmetric and concentrated near the poles. During the last decades mean-field dynamo models, in which large scale magnetic fields are thought to arise due to the combined inductive action of differential rotation and small scale turbulence, have been enormously successful in reproducing many of the observed features of the solar magnetic activity on a global scale. In the meantime, new observational techniques, most prominently helioseismology, have yielded invaluable information about the interior of the Sun. Asteroseismology promises to reveal the inner structure of stars other than the Sun in the near future. This new information, however, imposes strict conditions on dynamo models. Moreover, basically all of the present dynamo models depend on knowledge of the small-scale turbulent effects that produce the large-scale phenomena such as differential rotation and global magnetic fields. In many dynamo models these effects have to be prescribed in a rather ad hoc fashion with little or no support from observations or theoretical considerations. With powerful enough computers it would be possible, at least in principle, to numer- ically solve the equations of magnetohydrodynamics under stellar conditions, distinguish the dominant physical processes and study their behaviour as functions of different pa- rameters. However, scales of several orders of magnitude need to be resolved in the same model in order to accurately capture all the relevant dynamics, which renders the full problem unsolvable with the present day, or for that matter, any forseeable computers. In our view, a combination of mean-field modelling and local 3D calculations is a more fruitful approach. The large-scale structures of convection and magnetic fields are well described by global mean-field models, provided that the small-scale turbulent effects are adequately parameterized. The latter can be achieved by performing local calcula- tions because they allow a much higher spatial resolution than what can be achieved in direct global calculations. 1 In the present dissertation three differing aspects of developing mean-field theories and models of stars are studied. Firstly, the basic assumptions of different mean-field theories are tested in the contexts of passive scalar diffusion due to isotropic turbulence (Paper I) and the turbulent electromotive force due to turbulent convection
Recommended publications
  • Technical Activities 1983 Center for Basic Standards
    Technical Activities 1983 Center for Basic Standards U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1983 Final Issued January 1984 Prepared for: U S. DEPARTMENT OF COMMERCE National Bureau of Standards Qc /ashington, DC 20234 1 00 -USk p p p I p p V i I » i » i i » i [i fi n NBSIR 83-2793 TECHNICAL ACTIVITIES 1983 CENTER FOR BASIC STANDARDS Karl G. Kessler, Director U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1 983 Final Issued January 1984 Prepared for: U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234 U.S. DEPARTMENT OF COMMERCE, Malcolm Baidrige. Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Part II Page Technical Activities: Introduction 1 Quantum Metrology Group 2 Electricity Division 21 Temperature and Pressure Division 81 Length and Mass Division 123 Time and Frequency Division 135 Quantum Physics Division 187 i i I 1 I II II i li 1 1 INTRODUCTION This book is Part II of the 1983 Annual Report of the Center for Basic Standards and contains a summary of the technical activities of the Center for the period October 1, 1982 to September 30, 1983. The Center is one of the five resources and operating units in the National Measurement Laboratory. The summary of activities is organized in six sections, one for the technical activities of the Quantum Metrology Group, and one each for the five divisions of the Center.
    [Show full text]
  • Spot Activity of the RS Canum Venaticorum Star Σ Geminorum⋆
    A&A 562, A107 (2014) Astronomy DOI: 10.1051/0004-6361/201321291 & c ESO 2014 Astrophysics Spot activity of the RS Canum Venaticorum star σ Geminorum P. Kajatkari1, T. Hackman1,2, L. Jetsu1,J.Lehtinen1, and G.W. Henry3 1 Department of Physics, PO Box 64, 00014 University of Helsinki, 00014 Helsinki, Finland e-mail: [email protected] 2 Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland 3 Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209, USA Received 14 February 2013 / Accepted 6 November 2013 ABSTRACT Aims. We model the photometry of RS CVn star σ Geminorum to obtain new information on the changes of the surface starspot distribution, that is, activity cycles, differential rotation, and active longitudes. Methods. We used the previously published continuous period search (CPS) method to analyse V-band differential photometry ob- tained between the years 1987 and 2010 with the T3 0.4 m Automated Telescope at the Fairborn Observatory. The CPS method divides data into short subsets and then models the light-curves with Fourier-models of variable orders and provides estimates of the mean magnitude, amplitude, period, and light-curve minima. These light-curve parameters are then analysed for signs of activity cycles, differential rotation and active longitudes. d Results. We confirm the presence of two previously found stable active longitudes, synchronised with the orbital period Porb = 19.60, and found eight events where the active longitudes are disrupted. The epochs of the primary light-curve minima rotate with a shorter d period Pmin,1 = 19.47 than the orbital motion.
    [Show full text]
  • PDF Version in Chronological Order (Updated May 17, 2013)
    Complete Bibliography for Ritter Observatory May 17, 2013 The following papers are based in whole or in part on observations made at Ritter Observatory. External collaborators are listed in parentheses unless the research was done while they were University of Toledo students. Refereed or invited: 1. A. H. Delsemme and J. L. Moreau 1973, Astrophys. Lett., 14, 181–185, “Brightness Profiles in the Neutral Coma of Comet Bennett (1970 II)” 2. B. W. Bopp and F. Fekel Jr. 1976, A. J., 81, 771–773, “HR 1099: A New Bright RS CVn Variable” 3. A. H. Delsemme and M. R. Combi 1976, Ap. J. (Letters), 209, L149–L151, “The Production Rate and Possible Origin of O(1D) in Comet Bennett 1970 II” 4. A. H. Delsemme and M. R. Combi 1976, Ap. J. (Letters), 209, L153–L156, “Production + Rate and Origin of H2O in Comet Bennett 1970 II” 5. D. W. Willmarth 1976, Pub. A. S. P., 88, 86–87, “The Orbit of 71 Draconis” 6. W. F. Rush and R. W. Thompson 1977, Ap. J., 211, 184–188, “Rapid Variations of Emission-Line Profiles in Nova Cygni 1975” 7. S. E. Smith and B. W. Bopp 1980, Pub. A. S. P., 92, 225–232, “A Microcomputer-Based System for the Automated Reduction of Astronomical Spectra” 8. B. W. Bopp and P. V. Noah 1980, Pub. A. S. P., 92, 333–337, “Spectroscopic Observations of the Surface-Activity Binary II Pegasi (HD 224085)” 9. M. R. Combi and A. H. Delsemme 1980, Ap. J., 237, 641–645, “Neutral Cometary Atmospheres. II.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • Radio Astronomvy 08Er O J an 2 8
    '1 NATIONAL RADIO0 ASTRONOMY O BSERVAT 0 R Y FOURTH QUARTER REPORT October 1, 1984- December 31, 1984 RADIO ASTRONOMVY 08ER O CHARLOTTESVILLE, VA. JAN 2 8 -9, OBSERVING PROGRAM 140-foot Telescope Hours Scheduled observing 1739.00 Scheduled maintenance and equipment changes 185.25 Scheduled tests and calibration 190.75 Time lost due to: equipment failure 31.50 power 3.25 weather 40.75 interference 0.75 The following continuum programs were conducted during this quarter. No. Observer Program S279 D. Stinebring Observations at 10.65 GHz to search A. Wolszczan (NAIC) for steep spectrum, galactic sources near 1 = 23.5°. U19 J. Uson (Princeton) Continued search at 19.5 GHz for D. Wilkinson (Princeton) small-scale anisotropy of the micro- wave background. U20 J. Uson (Princeton) Observations of the Sunyaev-Zeldovich D. Wilkinson (Princeton) effect at 19.5 GHz. The following line programs were conducted during this quarter. No. Observer Program B428 L. Blitz (Maryland) Observations at 327 MHz to search for L. Armus (Maryland) interstellar deuterium and at 310 MHz V. Escalante-Ramirez (CFA) to search for the deuterated OH T. Hartquist (Maryland) molecule OD. S. Lepp (CFA) T. Hewagama (Maryland) C220 F. Clark (Kentucky) Observations at the 4 mainline fre- S. Miller (Kentucky) quencies of OH emission/absorption A. Bridle in bi-polar flows. H. Martin 13 W. Irvine (Massachusetts) Search at 1.7 cm for interstellar S. Madden (Massachusetts) ethylamine (NH 2 CCH). H. Matthews (Herzberg) D. Swade (Massachusetts) M231 I. Mirabel (Puerto Rico) Observations at 6 and 18 cm of high- L. Rodriguez (Mexico) velocity H2 CO and OH in regions of A.
    [Show full text]
  • Bibliography from ADS File: Engvold.Bib June 27, 2021 1
    Bibliography from ADS file: engvold.bib Engvold, O., “The IAU Role”, 2007IAUS..236..467E ADS August 16, 2021 Martin, S. F., Engvold, O., & Lin, Y., “Comparisons of the Spines of Prominences (Filaments) in Hα and He II (304Å) Images”, 2007AAS...21012006M ADS Govender, K., Cheung, S.-L., Aretxaga, I., & Engvold, O., “Synergies among Martin, S. F., Lin, Y., & Engvold, O., “A Simple Method of Resolving the IAU Offices”, 2020IAUGA..30..563G ADS the 180 Degree Ambiguity Employing the Chirality of Solar Features”, Engvold, O., “IAU’s Interaction with Young Astronomers”, 2006SPD....37.0129M ADS 2019IAUS..349...75E ADS Lin, Y., Martin, S. F., & Engvold, O., ““Coronal Cloud” Prominences And Their Engvold, O., Vial, J.-C., & Skumanich, A.: 2019, Preface, xvii Association With Coronal Mass Ejections”, 2006SPD....37.0121L ADS 2019sgsp.bookD..17E ADS Lin, Y., Martin, S. F., Engvold, O., Rouppe van der Voort, L. H. M., & van Engvold, O. & Zirker, J. B.: 2019, Chapter 12.2 - High-Resolution Ground- Noort, M., “Dynamics of an active region filament, fibrils and surges in high Based Observations of the Sun, 419–441 2019sgsp.book..419E ADS resolution”, 2006cosp...36.3193L ADS Zirker, J. B. & Engvold, O.: 2019, Chapter 1 - Discoveries and Concepts: The Engvold, O., Harvey, J., Leibacher, J., et al., “Editorial Appreciation”, Sun’s Role in Astrophysics, 1–26 2019sgsp.book....1Z ADS 2006SoPh..233....1E ADS Engvold, O., Vial, J.-C., & Skumanich, A.: 2019, The Sun as a Guide to Stellar Martin, S. F. & Engvold, O., “Evidence for the Formation of Faint, High Promi- Physics 2019sgsp.book.....E ADS nences in the Aftermath of two Faint CMEs”, 2005AAS...20720401M Engvold, O.
    [Show full text]
  • DETECTING the COMPANIONS and ELLIPSOIDAL VARIATIONS of RS Cvn PRIMARIES
    The Astrophysical Journal, 807:23 (10pp), 2015 July 1 doi:10.1088/0004-637X/807/1/23 © 2015. The American Astronomical Society. All rights reserved. DETECTING THE COMPANIONS AND ELLIPSOIDAL VARIATIONS OF RS CVn PRIMARIES. I. σGEMINORUM Rachael M. Roettenbacher1, John D. Monnier1, Gregory W. Henry2, Francis C. Fekel2, Michael H. Williamson2, Dimitri Pourbaix3, David W. Latham4, Christian A. Latham4, Guillermo Torres4, Fabien Baron1, Xiao Che1, Stefan Kraus5, Gail H. Schaefer6, Alicia N. Aarnio1, Heidi Korhonen7, Robert O. Harmon8, Theo A. ten Brummelaar6, Judit Sturmann6, Laszlo Sturmann6, and Nils H. Turner6 1 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 2 Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209, USA 3 FNRS, Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles (ULB), Belgium 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5 School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK 6 Center for High Angular Resolution Astronomy, Georgia State University, Mount Wilson, CA 91023, USA 7 Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö, Finland 8 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware, OH 43015, USA Received 2015 February 27; accepted 2015 April 17; published 2015 June 25 ABSTRACT To measure the properties of both components of the RS Canum Venaticorum binary σGeminorum (σ Gem),we directly detect the faint companion, measure the orbit, obtain model-independent masses and evolutionary histories, detect ellipsoidal variations of the primary caused by the gravity of the companion, and measure gravity darkening.
    [Show full text]
  • Extrasolar Planets and Their Host Stars
    Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it.
    [Show full text]
  • Master's Thesis Astronomy Veikko Mäkelä 12 May 2015
    Master’s Thesis Astronomy PERIOD ANALYSIS OF V-BAND PHOTOMETRY OF RS CANUM VENATICORUM STAR BD CETI Veikko Mäkelä 12 May 2015 Supervisor: Doc. Lauri Jetsu Examiners: Prof. Karri Muinonen Doc. Lauri Jetsu UNIVERSITY OF HELSINKI DEPARTMENT OF PHYSICS P.O. BOX 64 (Gustaf Hällströmin katu 2) FI-00014 University of Helsinki HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI Tiedekunta/Osasto – Fakultet/Sektion – Faculty/Section Laitos – Institution – Department Ú¿½«´¬§ ±º ͽ·»²½» Ü»°¿®¬³»²¬ ±º и§­·½­ Tekijä – Författare – Author Ê»·µµ± Ó<µ»´< Työn nimi – Arbetets titel – Title л®·±¼ ß²¿´§­·­ ±º ÊóÞ¿²¼ 豬±³»¬®§ ±º ÎÍ Ý¿²«³ Ê»²¿¬·½±®«³ ͬ¿® ÞÜ Ý»¬· Oppiaine – Läroämne – Subject ß­¬®±²±³§ Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Ó¿­¬»®ù­ ¬¸»­·­ ïî Ó¿§ îðïë ëð Tiivistelmä – Referat – Abstract É» ­¬«¼·»¼ ¿² ÎÍ Ý¿²«³ Ê»²¿½±®«³ ¬§°» ­¬¿® ÞÜ Ý»¬·ò ׬ ·­ ¿ ½¸®±³±­°¸»®·½¿´´§ ¿½¬·ª» ¾·²¿®§ øÝßÞ÷ò ̸» °®·³¿®§ ½±³°±²»²¬ ·­ ¿ ¹·¿²¬ ­¬¿®ô ¾«¬ ­¸±©­ ­±´¿® ¬§°» ¿½¬·ª·¬§ò É·¬¸ ¬¸» ±®¾·¬¿´ °»®·±¼ ±º íëòï ¼¿§­ô ·¬ ¾»´±²¹­ ·²¬± ¬¸» ´±²¹ °»®·±¼ ¹®±«° ±º ÎÍ Ýʲ ­¬¿®­ò ̸» ¬·¼¿´ ·²¬»®¿½¬·±² ¾»¬©»»² ¬¸» ¾·²¿®§ ½±³°±²»²¬­ ¸¿­ ¿½½»´»®¿¬»¼ ¬¸» ®±¬¿¬·±² ±º ¬¸» ¿½¬·ª» ½±³°±²»²¬ ­± ¬¸¿¬ ±®¾·¬¿´ ¿²¼ ®±¬¿¬·±²¿´ °»®·±¼ ¿®» ¿´³±­¬ ¬¸» ­¿³»ò ̸·­ º¿­¬ ®±¬¿¬·±² ³¿·²¬¿·²­ ³¿¹²»¬·½ ¿²¼ ½¸®±³±­°¸»®·½ ¿½¬·ª·¬§ò É» ¿°°´·»¼ ¬¸» ݱ²¬·²«±«­ л®·±¼ Í»¿®½¸ øÝÐÍ÷ ³»¬¸±¼ ¬± î𠧻¿®­ ¿«¬±³¿¬»¼ Ê󾿲¼ °¸±¬±³»¬®§ò Ó±¼»´´·²¹ ¹¿ª» «­ ³»¿² ³¿¹²·¬«¼»­ô ¿³°´·¬«¼»­ô °»®·±¼­ô ¿²¼ °®·³¿®§ ¿²¼ ­»½±²¼¿®§ ³·²·³¿ ±º ¬¸»
    [Show full text]
  • Jahresbericht 2014 (Pdf)
    Jahresbericht 2014 Mitteilungen der Astronomischen Gesellschaft 98 (2015), 1–99 Potsdam Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam Tel. 03317499-0, Telefax: 03317499-267 E-Mail: [email protected] WWW: http://www.aip.de Beobachtungseinrichtungen Robotisches Observatorium STELLA Observatorio del Teide, Izaña E-38205 La Laguna, Teneriffa, Spanien Tel. +34 922 329 138 bzw. 03317499-633 LOFAR-Station DE604 Potsdam-Bornim D-14469 Potsdam Tel. 03317499-291, Telefax: 03317499-352 Sonnenobservatorium Einsteinturm Telegrafenberg, D-14473 Potsdam Tel. 0331288-2303/-2304, Telefax: 03317499-524 1 Einleitung Das Leibniz-Institut für Astrophysik Potsdam (AIP) ist eine Stiftung bürgerlichen Rechts zum Zweck der wissenschaftlichen Forschung auf dem Gebiet der Astrophysik. Als Bund- Länder-finanzierte, außeruniversitäre Forschungseinrichtung ist es Mitglied der Leibniz- Gemeinschaft. Seinen Forschungsauftrag führt das AIP im Rahmen von nationalen und internationalen Kooperationen aus. Die Beteiligung am Large Binocular Telescope auf dem Mt Graham in Arizona, dem größten optischen Teleskop der Welt, verdient hierbei beson- dere Erwähnung. Neben seinen Forschungsarbeiten profiliert sich das Institut zunehmend als Kompetenzzentrum im Bereich der Entwicklung von Forschungstechnologie. Vier gemeinsame Berufungen mit der Universität Potsdam und mehrere außerplanmäßige Professuren und Privatdozenturen an Universitäten in der Region und weltweit verbinden das Institut mit der universitären Forschung und Lehre. Zudem nimmt das AIP Aufgaben im Bereich der Aus-, Fort- und Weiterbildung sowie in der Öffentlichkeitsarbeit wahr. Ferner verwaltet die Stiftung AIP auch ein umfassendes wissenschaftshistorisches Erbe. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, der ersten Forschungseinrichtung weltweit, die sich ausdrücklich der astrophysikalischen Forschung widmete.
    [Show full text]
  • Publications John B. Rice
    Publications John B Rice Rice JB Systems for Determining Radial velocities with an All Reection Stellar Sp ectrograph MA Thesis University of Toronto Crampton D Herd JF Hub e DB and Rice JB A Comparative Study of Systems of Lines for Radial Velocity Determinations with Dierent Sp ectrographs IAU Symp osium Number Rice JB An ObliqueRotator Mo del for the Magnetic and Sp ectrum Variable HD PhD Thesis University of Western Ontario Burke EW Rice JB and Wehlau WH The Period of the Light Variation of HD PASP Rice JB An Oblique Rotator Mo del for the Magnetic and Sp ectrum Variable HD Astron omy and Astrophysics Rice JB and Gaizauskas V The Oscillatory Velocity Field Observed in a Unip olar Sunsp ot Re gion Solar Physics Rice JB A Radial Velocity Study of the Ap star HD PASP Rice JB A Line identication List for the Ap star HD PASP Rice JB The HydrogenLineStrength Variation in the Ap Star HD J Roy Astron So c Can Rice JB The Short Period Radial Velocity Variability of the Si Star CG and HD A A Rice JB Wehlau WH Khokhlova V and Piskunov NE Distribution of Iron and Chromium over the Surface of Epsilon U Ma Pro ceedings of the rd Liege International Astrophysical Sym p osium Rice JB LINPOS An Interactive Program for Stellar Line Position Measurement P Dominion Astrophysical Observatory Vol XVI 1 Cowley C and Rice JB HR Returning to Rare Earth Maximum Phase Nature Rice JB and Wehlau WH Absorption Line Symmetries for Two Hg Mn Stars A A Khokhlova V Piskunov NE Rice JB and Wehlau WH Mapping of Iron and Chromium
    [Show full text]
  • NSO Scientific Papers 1985-1999
    NSO Publications, 1985-1999 NSO Publications, 1985-1999 Sorted Alphabetically by Author Abdelatif, T.E. 1985, Umbral Oscillations as a Probe of Sunspot Structure. PhD Thesis (University of Rochester) Abdelatif, T.E., Lites, B.W., and Thomas, J.H. 1984, in Small-Scale Dynamical Processes in Quiet Stellar Atmospheres: Workshop Proceedings, Sunspot, New Mexico, 25-29 Jul. 1983. S.L. Keil, ed., 141-147: Oscillations in a Sunspot and the Surrounding Photosphere Abdelatif, T.E., Lites, B.W., and Thomas, J.H. 1986, Astrophys. J. 311, 1015-1024: The Interaction of Solar P-Modes with a Sunspot. I. Observations Abrams, D., and Kumar, P. 1996, Astrophys. J. 472, 882-890: Asymmetries of Solar p-Mode Line Profiles Abrams, M.C., Davis, S.P., Rao, M.L., and Engleman, R. 1990, Astrophys. J. 363, 326-330: Highly Excited Rotational States of the Meinel System of OH Abrams, M.C., Davis, S.P., Rao, M.L., Engleman, R., and Brault, J.W. 1994, Astrophys. J. Suppl. Ser. 93, 351-395: High-Resolution Fourier Transform Spectroscopy of the Meinel System of OH Acton, D.S. 1989, in High Spatial Resolution Solar Observations: Proceedings of the Tenth Sacramento Peak Summer Symposium, Sunspot, New Mexico, 22-26 August, 1988. O. Von der Luhe, ed., 71-86: Results from the Lockheed Solar Adaptive Optics System Acton, D.S. 1990, Real-Time Solar Imaging with a 19-Segment Active Mirror System: a Study of the Standard Atmospheric Turbulence Model. PhD Thesis (Texas Tech University). Acton, D.S. 1994, in Real-Time and Post-Facto Solar Image Correction.
    [Show full text]