PLOS ONE RESEARCH ARTICLE A comparative analysis of drinking water employing metagenomics 1,2 2,3 4 5 Kyle D. BrumfieldID , Nur A. Hasan , Menu B. LeddyID , Joseph A. Cotruvo , Shah 1,3 1,2,3 1 M. Rashed , Rita R. ColwellID , Anwar Huq * 1 Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America, 2 University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America, 3 CosmosID Inc., Rockville, MD, United States of America, 4 Essential Environmental and Engineering Systems, Huntington Beach, CA, United States of America, 5 Joseph Cotruvo and Associates LLC, Washington, DC, United States of America a1111111111 a1111111111 *
[email protected] a1111111111 a1111111111 a1111111111 Abstract The microbiological content of drinking water traditionally is determined by employing cul- ture-dependent methods that are unable to detect all microorganisms, especially those that OPEN ACCESS are not culturable. High-throughput sequencing now makes it possible to determine the microbiome of drinking water. Thus, the natural microbiota of water and water distribution Citation: Brumfield KD, Hasan NA, Leddy MB, Cotruvo JA, Rashed SM, Colwell RR, et al. (2020) A systems can now be determined more accurately and analyzed in significantly greater comparative analysis of drinking water employing detail, providing comprehensive understanding of the microbial community of drinking water metagenomics. PLoS ONE 15(4): e0231210. applicable to public health. In this study, shotgun metagenomic analysis was performed to https://doi.org/10.1371/journal.pone.0231210 determine the microbiological content of drinking water and to provide a preliminary assess- Editor: Christopher Staley, University of Minnesota ment of tap, drinking fountain, sparkling natural mineral, and non-mineral bottled water.