Exophiala Spinifera and Its Allies: Diagnostics from 109 Morphology to DNA Barcoding

Total Page:16

File Type:pdf, Size:1020Kb

Exophiala Spinifera and Its Allies: Diagnostics from 109 Morphology to DNA Barcoding UvA-DARE (Digital Academic Repository) Developing species recognition and diagnostics of rare opportunistic fungi Zeng, J. Publication date 2007 Document Version Final published version Link to publication Citation for published version (APA): Zeng, J. (2007). Developing species recognition and diagnostics of rare opportunistic fungi. IBED. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 Developing Species Recognition and Diagnostics of Rare Opportunistic Fungi Opportunistic Rare of Diagnostics and Recognition Species Developing Developing Species Recognition and Diagnostics of Rare Opportunistic Fungi Jingsi Zeng Jingsi Zeng Developing Species Recognition and Diagnostics of Rare Opportunistic Fungi Jingsi Zeng Promotor Prof. Dr. G.S. de Hoog Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre, Royal Netherlands Academy of Arts and Sciences Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Co-promotor Dr. Y. Gräser Humboldt University, Germany Promotiecommissie W. Admiraal (IBED, Amsterdam) S. Menken (IBED, Amsterdam) M. Sabelis (IBED, Amsterdam) J. Meis (Canisinus-Wilhelmina Ziekenhuis, Nijmegen) G. Haase (RWTH, Aachen) Developing Species Recognition and Diagnostics of Rare Opportunistic Fungi Jingsi Zeng ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. J. W. Zwemmer ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op dinsdag 18 september 2007, te 10.00 uur Printed by Ponsen & Looijen B.V., Wageningen, the Netherlands The work was financially supported by the joint research project ‘Comparative genomics in search of origins of human pathogenicity in the fungal Tree of Life focusing on species with high morbidity and mortality in Chinese patients’, Scientific cooperation between China and the Netherlands, China Exchange Programme, Royal Netherlands Academy of Arts and Sciences (KNAW). This thesis is dedicated to my dear parents, husband and daughter, my tutors for Master’s degree Prof. Zhaoru Zhu and Prof. Yuechen Zheng 谨献给我亲爱的父母、丈夫及女儿, 以及恩师祝兆如教授和郑岳臣教授 Contents Page Chapter 1 Introduction and outline of thesis 1 Chapter 2 Intraspecific diversity of species of Pseudallescheria boydii 25 complex Chapter 3 Exophiala xenobiotica sp. nov., an opportunistic black yeast 45 inhabiting environments rich in hydrocarbons Chapter 4 Spectrum of clinically relevant Exophiala species in the U.S.A. 65 Chapter 5 Phylogeny of the Exophiala spinifera clade using multilocus 85 sequence data and exploring phylogenetic species concept Chapter 6 Exophiala spinifera and its allies: diagnostics from 109 morphology to DNA barcoding Chapter 7 Susceptibility of Pseudallescheria boydii and Scedosporium 133 apiospermum to new antifungal agents Chapter 8 General dicussion 139 Appendix Summary 151 List of publications and abstracts 155 Acknowledgements 158 Curriculum vitae 161 Chapter 1 Introduction and outline of thesis 1 Chapter 1 Historical overview of species recognition in Pseudallescheria and Exophiala The fungal genera Pseudallescheria and Exophiala include agents of opportunistic infection in humans. They are potentially able to cause a wide diversity of mycoses, varying from cutaneous infections to disseminated syndromes. Most infections are noted in otherwise healthy individuals and are of traumatic nature or concern colonization of cavities or the intestinal tract. Most are typical opportunists in that they expand or disseminate when the innate immunity of the host is impaired. However, some Exophiala species are repeatedly observed to cause fatal, systemic or disseminated infections in patients without any immune disorder. The pathology of these fungi is poorly understood since development of the knowledge was long time hampered by inadequate diagnostics. Although they are among the first fungi reported from deep human infections [1], their taxonomy flourished only since the application of molecular methods [2;3]. In the routine laboratory, species recognition is still problematic. Pseudallescheria Negroni et Fischer The lineage of the genus Pseudallescheria (anamorph Scedosporium) is Eukaryota, Fungi, Ascomycota, Euascomycetes, Microascales, Microascaceae. The species thus far established in the genus are listed in Table 1. Colonies on cornmeal agar are rapid growing, floccose or lanose, initially whitish or grey, becoming grey or brown; ascomata are usually submerged, globose, nonostiolate, 100-200 μm in diameter width; peridium composed of flattened, brown, pseudoparenchymatous cells, 2-3 cells thick; asci are globose to ellipsoidal, symmetrical or slightly flattened, with 2 germ pores, light brown to yellowish; homothallic. Scedosporium, Graphium, or both anamorphs may be formed [4]. In 1893, Costantin described a species Eurotiopsis gayoni Cost. [5]. As the name Eurotiopsis had already been used for an entirely different fungus, Saccardo substituted the generic name Allescheria in 1899 [6]. Based on Costantin’s illustration and descriptions of E. gayoni, Malloch [7] concluded that it should be classified in the genus Monascus van Tiegh., 1884. Thus the genera Allescheria and Eurotiopsis became later synonyms of the genus Monascus. In 1922, a strain, isolated by M. F. Boyd from a patient with mycetoma, was considered to be closely related to but different from Eurotiopsis gayoni. It was described as a 2 Introduction new species, Allescheria boydii Shear in 1922 [8]. When the members of the ascomycete family Microascaceae were studied by Malloch, the ascomata and ascospores produced by A. boydii were found to be significantly different from those produced by either the other species of Monascus or any other genus of cleistothecial ascomycetes [7]. Malloch proposed the new genus Petriellidium in the family Microascaceae for A. boydii. Consequently, six other Petriellidium (Pe. africanum Arx & G. Franz, 1973, Pe. angustum Malloch & Cain, 1972, Pe. desertorum Arx & Moustafa, 1973, Pe. ellipsoideum Arx & Fassatiová, 1973, Pe. fimeti Arx, Mukerji & Singh, 1978 and Pe. fusoideum Arx, 1973) (throughout this chapter Pe will be used for Petriellidium, Ps for Pseudallescheria) were described in this genus [9-11]. In 1943 and again in 1944, Negroni & Fischer described the genus and species Pseudallescheria shearii (as ‘sheari’) for a cleistothecial ascomycete [12;13]. Comparing the type specimens of Petriellidium Malloch and Pseudallescheria Negroni et Fischer, McGinnis et al. indicated that these 2 genera were congeneric [4]. Because of priority, the proper name of this genus is Pseudallescheria. At that moment, a total of 7 Petriellidium species were reclassified on the basis of morphology as distinct species of Pseudallescheria (Ps. boydii, Ps. africana, Ps. angusta, Ps. desertorum, Ps. ellipsoidea, Ps. fimeti and Ps. fusoidea). Members of the genus Pseudallescheria typically produce Scedosporium or Graphimu anamorphs, or both. Until 1991, 2 anamorph species of Pseudallescheria had been accepted, which are Scedosporium apiospermum Sacc. ex Castell. & Chalmers [14] and Scedosporium prolificans (Hennebert & B.G. Desai) Guého & de Hoog [15]. The morphological circumscriptions of Ps. boydii, Ps. angusta, Ps. ellipsoidea and Ps. fusoidea are narrow. A part of isolates maintained as Ps. boydii failed to produce cleistothecia upon inspection from collection strains regardless of growth conditions. Ps. angusta, Ps. fusoidea and Ps. ellipsoidea were later reduced to synonymy with Ps. boydii (Ps. boydii complex) on the basis of identical Internal Transcribed Spacer (ITS) sequences of ribosomal DNA (rDNA) [16] and a ~300 bp fragment of the D1/D2 Large Subunit (LSU) region of rDNA [17]. The recently described species Ps. minutispora Gilgado et al., S. aurantiacum Gilgado et al. [2], and two more species proposed by Gilgado and co-workers [18] have been segregated from Ps. boydii on the basis of genealogical concordance of calmodulin, β-tubulin and ITS region of rDNA genes and phenotypic characters. At this moment, 9 species are accepted in the ascomycete genus Pseudallescheria, but thus far only few outstanding 3 Chapter 1 differences have been found in features of pathogenicity, ecology and antifungal susceptibility between the new species and Ps. boydii [2;19;20]. Excluding molecular data, species recognition still is difficult in the routine lab, and as a result existing differences may be overlooked. Therefore it is essential that more tools become available to recognize species in the genus Pseudallescheria. Exophiala J.W. Carmichael Exophiala is the main genus of
Recommended publications
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Subcutaneous Phaeohyphomycosis Caused by Exophiala Salmonis
    Case Report Clinical Microbiology Ann Lab Med 2012;32:438-441 http://dx.doi.org/10.3343/alm.2012.32.6.438 ISSN 2234-3806 • eISSN 2234-3814 Subcutaneous Phaeohyphomycosis Caused by Exophiala salmonis Young Ahn Yoon, M.D.1, Kyung Sun Park, M.D.1, Jang Ho Lee, M.T.1, Ki-Sun Sung, M.D.2, Chang-Seok Ki, M.D.1, and Nam Yong Lee, M.D.1 Departments of Laboratory Medicine and Genetics1, Orthopedic Surgery2, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea We report a case of subcutaneous infection in a 55-yr-old Korean diabetic patient who Received: June 18, 2012 presented with a cystic mass of the ankle. Black fungal colonies were observed after cul- Revision received: July 30, 2012 Accepted: September 12, 2012 turing on blood and Sabouraud dextrose agar. On microscopic observation, septated ellip- soidal or cylindrical conidia accumulating on an annellide were visualized after staining Corresponding author: Nam Yong Lee Department of Laboratory Medicine and with lactophenol cotton blue. The organism was identified as Exophiala salmonis by se- Genetics, Samsung Medical Center, quencing of the ribosomal DNA internal transcribed spacer region. Phaeohyphomycosis is 81 Irwon-ro, Gangnam-gu, Seoul 135-710, a heterogeneous group of mycotic infections caused by dematiaceous fungi and is com- Korea Tel: +82-2-3410–2706 monly associated with immunocompromised patients. The most common clinical mani- Fax: +82-2-3410–2719 festations of subcutaneous lesions are abscesses or cystic masses. To the best of our E-mail: [email protected] knowledge, this is the first reported case in Korea of subcutaneous phaeohyphomycosis caused by E.
    [Show full text]
  • Black Fungal Extremes
    Studies in Mycology 61 (2008) Black fungal extremes Edited by G.S. de Hoog and M. Grube CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Black fungal extremes STUDIE S IN MYCOLOGY 61, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR S Manon van den Hoeven-Verweij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Kasper Luijsterburg, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Exophiala Jeanselmei, with a Case Report and in Vitro Antifungal Susceptibility of the Species
    UvA-DARE (Digital Academic Repository) Biodiversity, pathogenicity and antifungal susceptibility of Cladophialophora and relatives Badali, H. Publication date 2010 Link to publication Citation for published version (APA): Badali, H. (2010). Biodiversity, pathogenicity and antifungal susceptibility of Cladophialophora and relatives. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 Chapter 6 The clinical spectrum of Exophiala jeanselmei, with a case report and in vitro antifungal susceptibility of the species H. Badali 1, 2, 3, M.J. Najafzadeh 1, 2, M. van Esbroeck 4, E. van den Enden 4, B. Tarazooie 1, J.F.G.M. Meis 5, G.S. de Hoog 1, 2 1CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, 2Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands, 3Department of Medical Mycology and Parasitology, School of Medicine/Molecular and Cell Biology Research Centre, Mazandaran University of Medical Sciences, Sari, Iran, 4Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium,5Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Indoor Wet Cells As a Habitat for Melanized Fungi, Opportunistic
    www.nature.com/scientificreports OPEN Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other Received: 23 June 2017 Accepted: 30 April 2018 vertebrates Published: xx xx xxxx Xiaofang Wang1,2, Wenying Cai1, A. H. G. Gerrits van den Ende3, Junmin Zhang1, Ting Xie4, Liyan Xi1,5, Xiqing Li1, Jiufeng Sun6 & Sybren de Hoog3,7,8,9 Indoor wet cells serve as an environmental reservoir for a wide diversity of melanized fungi. A total of 313 melanized fungi were isolated at fve locations in Guangzhou, China. Internal transcribed spacer (rDNA ITS) sequencing showed a preponderance of 27 species belonging to 10 genera; 64.22% (n = 201) were known as human opportunists in the orders Chaetothyriales and Venturiales, potentially causing cutaneous and sometimes deep infections. Knufa epidermidis was the most frequently encountered species in bathrooms (n = 26), while in kitchens Ochroconis musae (n = 14), Phialophora oxyspora (n = 12) and P. europaea (n = 10) were prevalent. Since the majority of species isolated are common agents of cutaneous infections and are rarely encountered in the natural environment, it is hypothesized that indoor facilities explain the previously enigmatic sources of infection by these organisms. Black yeast-like and other melanized fungi are frequently isolated from clinical specimens and are known as etiologic agents of a gamut of opportunistic infections, but for many species their natural habitat is unknown and hence the source and route of transmission remain enigmatic. Te majority of clinically relevant black yeast-like fungi belong to the order Chaetothyriales, while some belong to the Venturiales. Propagules are mostly hydro- philic1 and reluctantly dispersed by air, infections mostly being of traumatic origin.
    [Show full text]
  • Fungal Infections (Mycoses): Dermatophytoses (Tinea, Ringworm)
    Editorial | Journal of Gandaki Medical College-Nepal Fungal Infections (Mycoses): Dermatophytoses (Tinea, Ringworm) Reddy KR Professor & Head Microbiology Department Gandaki Medical College & Teaching Hospital, Pokhara, Nepal Medical Mycology, a study of fungal epidemiology, ecology, pathogenesis, diagnosis, prevention and treatment in human beings, is a newly recognized discipline of biomedical sciences, advancing rapidly. Earlier, the fungi were believed to be mere contaminants, commensals or nonpathogenic agents but now these are commonly recognized as medically relevant organisms causing potentially fatal diseases. The discipline of medical mycology attained recognition as an independent medical speciality in the world sciences in 1910 when French dermatologist Journal of Raymond Jacques Adrien Sabouraud (1864 - 1936) published his seminal treatise Les Teignes. This monumental work was a comprehensive account of most of then GANDAKI known dermatophytes, which is still being referred by the mycologists. Thus he MEDICAL referred as the “Father of Medical Mycology”. COLLEGE- has laid down the foundation of the field of Medical Mycology. He has been aptly There are significant developments in treatment modalities of fungal infections NEPAL antifungal agent available. Nystatin was discovered in 1951 and subsequently and we have achieved new prospects. However, till 1950s there was no specific (J-GMC-N) amphotericin B was introduced in 1957 and was sanctioned for treatment of human beings. In the 1970s, the field was dominated by the azole derivatives. J-GMC-N | Volume 10 | Issue 01 developed to treat fungal infections. By the end of the 20th century, the fungi have Now this is the most active field of interest, where potential drugs are being January-June 2017 been reported to be developing drug resistance, especially among yeasts.
    [Show full text]
  • Mycology Proficiency Testing Program
    Mycology Proficiency Testing Program Test Event Critique January 2014 Table of Contents Mycology Laboratory 2 Mycology Proficiency Testing Program 3 Test Specimens & Grading Policy 5 Test Analyte Master Lists 7 Performance Summary 11 Commercial Device Usage Statistics 13 Mold Descriptions 14 M-1 Stachybotrys chartarum 14 M-2 Aspergillus clavatus 18 M-3 Microsporum gypseum 22 M-4 Scopulariopsis species 26 M-5 Sporothrix schenckii species complex 30 Yeast Descriptions 34 Y-1 Cryptococcus uniguttulatus 34 Y-2 Saccharomyces cerevisiae 37 Y-3 Candida dubliniensis 40 Y-4 Candida lipolytica 43 Y-5 Cryptococcus laurentii 46 Direct Detection - Cryptococcal Antigen 49 Antifungal Susceptibility Testing - Yeast 52 Antifungal Susceptibility Testing - Mold (Educational) 54 1 Mycology Laboratory Mycology Laboratory at the Wadsworth Center, New York State Department of Health (NYSDOH) is a reference diagnostic laboratory for the fungal diseases. The laboratory services include testing for the dimorphic pathogenic fungi, unusual molds and yeasts pathogens, antifungal susceptibility testing including tests with research protocols, molecular tests including rapid identification and strain typing, outbreak and pseudo-outbreak investigations, laboratory contamination and accident investigations and related environmental surveys. The Fungal Culture Collection of the Mycology Laboratory is an important resource for high quality cultures used in the proficiency-testing program and for the in-house development and standardization of new diagnostic tests. Mycology Proficiency Testing Program provides technical expertise to NYSDOH Clinical Laboratory Evaluation Program (CLEP). The program is responsible for conducting the Clinical Laboratory Improvement Amendments (CLIA)-compliant Proficiency Testing (Mycology) for clinical laboratories in New York State. All analytes for these test events are prepared and standardized internally.
    [Show full text]
  • Mycology Proficiency Testing Program
    Mycology Proficiency Testing Program Test Event Critique January 2013 Mycology Laboratory Table of Contents Mycology Laboratory 2 Mycology Proficiency Testing Program 3 Test Specimens & Grading Policy 5 Test Analyte Master Lists 7 Performance Summary 11 Commercial Device Usage Statistics 15 Mold Descriptions 16 M-1 Exserohilum species 16 M-2 Phialophora species 20 M-3 Chrysosporium species 25 M-4 Fusarium species 30 M-5 Rhizopus species 34 Yeast Descriptions 38 Y-1 Rhodotorula mucilaginosa 38 Y-2 Trichosporon asahii 41 Y-3 Candida glabrata 44 Y-4 Candida albicans 47 Y-5 Geotrichum candidum 50 Direct Detection - Cryptococcal Antigen 53 Antifungal Susceptibility Testing - Yeast 55 Antifungal Susceptibility Testing - Mold (Educational) 60 1 Mycology Laboratory Mycology Laboratory at the Wadsworth Center, New York State Department of Health (NYSDOH) is a reference diagnostic laboratory for the fungal diseases. The laboratory services include testing for the dimorphic pathogenic fungi, unusual molds and yeasts pathogens, antifungal susceptibility testing including tests with research protocols, molecular tests including rapid identification and strain typing, outbreak and pseudo-outbreak investigations, laboratory contamination and accident investigations and related environmental surveys. The Fungal Culture Collection of the Mycology Laboratory is an important resource for high quality cultures used in the proficiency-testing program and for the in-house development and standardization of new diagnostic tests. Mycology Proficiency Testing Program provides technical expertise to NYSDOH Clinical Laboratory Evaluation Program (CLEP). The program is responsible for conducting the Clinical Laboratory Improvement Amendments (CLIA)-compliant Proficiency Testing (Mycology) for clinical laboratories in New York State. All analytes for these test events are prepared and standardized internally.
    [Show full text]
  • Changing Taxonomic Concepts and Their Impact on Nomenclatural Stability
    Journal of Medical and Veterinary Mycology (1994), 32, Supplement 1, 113-122 Changing taxonomic concepts and their impact on nomenclatural stability G. S. DE HOOG 1, L. SIGLER 2, W. A. UNTEREINER 3, K. J. KWON-CHUNG 4, E. GUI~HO 5 AND J. M. J. UIJTHOF 1 1Centraalbureau voor Schimmelcultures, Baarn, The Netherlands," 2 University of Alberta Microfungus Collection, Edmonton, and 3Department of Botany, University of Toronto, Toronto, Canada," 4Clinical Mycology Section, National Institute of Health, Bethesda, USA; and s Unitd de Mycologie, Institut Pasteur, France Experimental techniques, which are routinely applied in yeast systematics, are currently finding recognition in a growing number of filamentous taxa. Some other biochemical markers have recently been developed in hyphomycete taxonomy. The spectrum of potential criteria now comprises characters of coenzyme-Q systems, secondary metabo- lites, protein electrophoresis, serology, nuclear (n) DNA/DNA reassociation, mole% G+C of DNA, protein electrophoresis, nutritional physiology and ultrastructural and karyological data. In addition, a wide range of molecular techniques is gaining rapid acceptance in evolutionary, systematic, ecological and epidemiological studies. Depend- ing on the aim of the study, partial DNA sequencing (mainly of SS and LS ribosomal genes and their spacers, but also of other genes), PCR-ribotyping and mitochondrial (mt) DNA restriction analyses are particularly powerful; for the establishment of the taxo- nomic position of taxa, 5.8S ribosomal (r) rRNA sequencing and Southern blotting with conserved genes are useful. Together with renewed in-depth morphological studies and the elucidation of teleomorph connections and (syn)anamorph life cycles, these tech- For personal use only. niques provide tools for an improved understanding of the phylogeny and ecological role of the distinguished taxa.
    [Show full text]
  • Environmental Prospecting of Black Yeast-Like Agents of Human Disease
    www.nature.com/scientificreports OPEN Environmental prospecting of black yeast‑like agents of human disease using culture‑independent methodology Flávia de Fátima Costa1, Nickolas Menezes da Silva1, Morgana Ferreira Voidaleski2, Vinicius Almir Weiss2, Leandro Ferreira Moreno2, Gabriela Xavier Schneider2, Mohammad J. Najafzadeh3, Jiufeng Sun4, Renata Rodrigues Gomes2, Roberto Tadeu Raittz5, Mauro Antonio Alves Castro5, Graciela Bolzón Inez de Muniz6, G. Sybren de Hoog2,7* & Vania Aparecida Vicente1,2* Melanized fungi and black yeasts in the family Herpotrichiellaceae (order Chaetothyriales) are important agents of human and animal infectious diseases such as chromoblastomycosis and phaeohyphomycosis. The oligotrophic nature of these fungi enables them to survive in adverse environments where common saprobes are absent. Due to their slow growth, they lose competition with common saprobes, and therefore isolation studies yielded low frequencies of clinically relevant species in environmental habitats from which humans are thought to be infected. This problem can be solved with metagenomic techniques which allow recognition of microorganisms independent from culture. The present study aimed to identify species of the family Herpotrichiellaceae that are known to occur in Brazil by the use of molecular markers to screen public environmental metagenomic datasets from Brazil available in the Sequence Read Archive (SRA). Species characterization was performed with the BLAST comparison of previously described barcodes and padlock probe sequences. A total of 18,329 sequences was collected comprising the genera Cladophialophora, Exophiala, Fonsecaea, Rhinocladiella and Veronaea, with a focus on species related to the chromoblastomycosis. The data obtained in this study demonstrated presence of these opportunists in the investigated datasets. The used techniques contribute to our understanding of environmental occurrence and epidemiology of black fungi.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Evolution of CDC42, a putative virulence factor triggering meristematic growth in black yeasts Deng, S.; Gerrits van den Ende, A.H.G.; Ram, A.F.J.; Arentshorst, M.; Gräser, Y.; Hu, H.; de Hoog, G.S. DOI 10.3114/sim.2008.61.12 Publication date 2008 Document Version Final published version Published in Studies in Mycology Link to publication Citation for published version (APA): Deng, S., Gerrits van den Ende, A. H. G., Ram, A. F. J., Arentshorst, M., Gräser, Y., Hu, H., & de Hoog, G. S. (2008). Evolution of CDC42, a putative virulence factor triggering meristematic growth in black yeasts. Studies in Mycology, 61(1), 121-129. https://doi.org/10.3114/sim.2008.61.12 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Sep 2021 available online at www.studiesinmycology.org STUDIE S IN MYCOLOGY 61: 121–129.
    [Show full text]