<<

Emilian Dudas

CPhT-Ecole Polytechnique and LPT-Orsay

Multi-instanton and loop corrections in

P. Camara E.D, e-Print: arXiv:0806.3102 [hep-th] • (also P. Camara, E.D., T. Maillard, G. Pradisi, Nucl.Phys.B795:453- • 489,2008. e-Print: arXiv:0710.3080 [hep-th]) Outline

Motivations • The S-dual pairs • Thresholds and effective : type I side • Thresholds and effective action : heterotic side • Comments on E1 instantons • Universality of = 2 instantonic corrections • N Conclusions • july 28, 2008 CERN Institute String Pheno 08

CERN-TH 1. Motivations

SO(32) heterotic -type I duality (Polchinski,Witten) was explored extensively over the last ten years. S-duality allows exact computation of E1 instanton ef- fects in type I heterotic α corrections E1 instanton corrections • 0 → NS5 effects E5 instanton corrections • →

There are simple examples of dual pairs using Vafa- Witten adiabatic argument : freely-acting orbifolds (see Blumenhagen talk). Ex. heterotic-type I duality: higher-derivative in = N 4 SUSY case (Bachas, Kiritsis and coll., Lerche and Stieberger, etc) = 2 case discussed in (Antoniadis,Bachas,Fabre,Partouche N and Taylor; Bianchi, Morales). = 1 models : CDMP, Blumenhagen, Schmidt-Sommerfeld N We will mostly focus today on a standard Z2 orbifold - type I side constructed by Bianchi-Sagnotti and Gimon- Polchinski - heterotic dual pair identified by Berkooz,Leigh,Polchinski,Schwarz, Seiberg,Witten Our goal : computation of the full one-loop + E1 in- stanton corrections to the type I effective action . An important consistency check : comparison of the effective theory Kaplunovsky-Louis formula 2 2 4π ba MP = Refa + ln (µ) 4 µ2 c C (G) 4π2 T (r) + a + 2 ln a ln K 2 detZr 4 2 g (µ) − r 2 X where Ta(r) is the Dynkin index for the matter repre- sentation r with wavefunctions Zr, and

ba = Ta(r) 3C2(G) , ca = Ta(r) C2(G) r − r − X X with the one-loop string computation 4π2 4π2 = + Λ where 2 2 a , ga(µ) ga,0 2 ba Ms ∆a Λa = ln + 4 µ2 4 ∆a encodes string threshold corrections from massive string states. 2. The S-dual orbifold pairs

Simplest orbifold T 4/Z T 2, sixteen fixed points. 2 × Type I side - One twisted hypermultiplet per fixed point - Maximal gauge U(16) U(16) . 9 × 5 Hypers in (120 + 120, 1) + (1, 120 + 120) + (16, 16) In order to have a perturbative heterotic dual, distribute 1/2 D5 per fixed point. D5 gauge group broken to U(1)16. Each U(1) gets mixed with twisted four forms and become massive. D9 spectrum : hypers in 120 + 120 + 16 16. × Heterotic dual

SO(32) compactified to 4d on T 4/Z T 2. Shift vector 2 × on the gauge lattice 1 V = (1, 1, 3) 4 · · · − The gauge group is U(16). Charged matter is in rep- resentations : untwisted : 120 + 120 twisted : 16 16. × 3. Effective action and quantum corrections : type I side Threshold corrections to gauge couplings depend on moduli of T 2 : √G √G + iG T = + ib , U = 12 λ G22 One finds (Bachas-Fabre, Antoniadis,Bachas,E.D.)

4π2 4π2 = + Λ where 2 2 a ga (µ) ga,0 1 2 4 Λa = ˜b ln[√Gµ ReU η(iU) ] −4 | | The effective action is then 2 fD9 = S + ˜b ln[ReUη (iU)] + fnp K = ln(S + S¯) ln(U + U¯) ln(T + T¯) + − − − · · · 4π E(iU, 2) + Knp − 3 (T + T¯)(S + S¯) where E(U, k) is the Eisenstein series 1 (Im U)k E(U, k) ≡ ζ(2k) j + j U 2k (j ,j )=(0,0) 1 2 1 2X6 | | Last term in K needs a separate one-loop computation (ABFPT ; Berg,Haack,Kors). We expect E1 instan- tonic contributions

∞ 2πnT ∞ 2πnT fnp = gn(U) e− , Knp = hn(U, T +T¯) e− +c.c. nX=1 nX=1 4. Effective action and quantum corrections : het- erotic side

Threshold corrections to gauge couplings are given by (Kaplunovsky)

1/2 α d2τ i 1 ϑ 1 α Λ = β 2 a 4 ∂τ  h i Qa C , τ2 4π η η − 4πτ2! "β # ZF α,β=0 | | X     α Qa is the charge operator of the gauge group; C β is the internal six-dimensional partition function. h i For the S-dual of the BSGP model we find 1 d2τ Λ = Zˆ1 ˆf −8 τ2 A ZF with

1 24 ˆ = (D10E10 48η ) Af −20η24 − and 2 Re T π(Re T ) τ Zˆ1 = exp 2πT det(A) 1 iU A , τ2 − − τ2(Re U) 1!  ni,`i   − X  

n ` A = 1 1 , n2 `2! with ni and `i . We used methods of Dixon,Kaplunovsky, Louis and Bachas,Kiritsis et al. to evaluate Λ. We find

π 2 4 π E(iU1, 2) Λ = Re T1 3log[(Re U1)(Re T1)µ η(iU1) ] 2 − | | − 3 T1 + T¯1 − 1 1 1 ˆ ( ) e 2πpkT1 ˆ ( ) + AK U + c.c. − 4 − Af U + ¯ k>j 0,p>0 kp " πkpT1 T1# ≥X ˆ is the almost-holomorphic modular form, AK 1 2 3 ˆ = (Eˆ2E4E6 + 2E + 3E ) AK 12η24 6 4

We have expressed the result in terms of the induced worldvolume complex structure in the E1 multi-instantons wrapping the first 2-torus j + ipU = 1 U k Split between analytic and non-analytic terms ; the cor- rected K¨ahler potential and gauge kinetic function are 3 1V1 loop + VE1 K = log(S + S¯) log[(Ti + T¯i)(Ui + U¯i)] + − , − − 2 S + S¯ iX=1 4π E(iU1, 2) V1 loop = , − − 3 T1 + T¯1

e 2πkpT1 ˆ ( ) πkp E ( ) V = − AK U 10 U + c.c. , E1 − ( )2 + ¯ − 2 24( ) k>j 0, p>0 π kp "T1 T1 Re η # ≥X U U πT 1 e 2πkpT1 f = S + 1 12log η(iU ) − ( ) , U(16) 2 − 1 − 2 Af U k>j 0, p>0 kp ≥X where the holomorphic modular forms and , are Af AK defined as before, replacing Eˆ2 by E2. 5. E1 instantons

The instantonic corrections depend on the moduli of T 2 come from E1 instantons wrapping T 2. → They are of two different types: E1 instantons at orbifold fixed points They have unitary Chan-Paton factors, U(r), with neu- tral sector :

- bosonic zero modes xµ, y1,2 and fermionic zero modes Θα,a, Θα,a˙ , with a = 1, 2 in the adjoint representation r¯r. α,a - bosonic zero modes y3,4,5,6 and fermionic ones λ in r(r+1) ¯r(¯r+1) the symmetric representation 2 + 2 . - fermionic zero modes ˜λα,a˙ in the antisymmetric rep- r(r 1) ¯r(¯r 1) resentation 2− + 2− . Charged zero modes between the instanton and the • 1/2 D5-brane stuck at the singularity: -bosonic zero modes µ1,2 from the R sector and fermionic zero modes ωα from the NS sector, in the representa-

tion r 1 + ¯r1. − r -bosonic zero modes µ10 ,2 in the representation +1 + ¯r 1. − E1-D9 strings : bosonic zero mode ν in the represen- • tation rn¯ + ¯rn. E1 instantons off the orbifold fixed points It can be argued that these instantons do not contribute to threshold corrections. In order the instantons to contribute to the gauge ki- netic function, only four fermionic neutral zero modes should be massless (the “goldstinos” ; Akerblom,Blumenhagen, Lust and Schmidt-Sommerfeld) most of the above → zero modes should be lifted by interactions. Possible qualitative picture : a U(1) instanton on top of a singularity correspond is • a “gauge” instanton for the U(1) inside the corresponding half D5-brane. These instantons are analogous to the ones discussed by Petersson, with the extra fermionic zero modes being lifted by couplings in- volving the D5-. They should be responsible for the 1-instanton (N = 1) contribution. For the N-instanton contribution, when all the instan- • tons are on top of the same singularity, the instanton CP is enhanced to U(N) and only four zero modes sur- vive, with the extra zero modes presumably lifted by interactions with the D5-branes. (Dedicated works on lifting of zero modes ; Blumen- hagen,Cvetic,Richter,Weigand; Garcia-Etxebarria and Uranga) 5. Universality of = 2 instantonic corrections N

We shall try to generalize the instantonic corrections • to the effective action in case where the heterotic S- dual description is unknown. Framework: orbifold compactifications, with orbifold action G containing subgroups Gi leaving unrotated a given complex plane. The contribution of these sectors to threshold correc- tions : 1 2 d τ ˆ ˆa Λa = Zi f,i . −8 τ2 A Xi ZF The gauge group is given by a product G = a Ga. Q T , U are moduli of the corresponding unrotated plane • i i ˆa M a/η24, with M a an almost holomorphic mod- • Af,i ∼ i i ular form of degree 24. By imposing the absence of in the spectrum, we obtain

a a γi 24 ˆ = 2b + D10E10 528η , Af,i i 20η24 − h i where ba is the β-function coefficient of the = 2 i N gauge theory associated to a would-be T 6/Gi orbifold

and γi is a model dependent (but gauge group indepen- dent) coefficient. We get a π(bi + 6γi) πγi E(iUi, 2) Λa = Re Ti + ( 12 3 Ti + T¯i − Xi 1 1 γ ˆ ( ) 2πpkTi ˆa i K i e− f,i( i) A U + c.c. −4  kp "A U − πkp Ti + T¯i #  − k>j X0,p>0  ≥ a  bi 4 2 log η(iUi) + log[(Re Ui)(Re Ti)µ ] , − 4 | | )   The K¨ahler potential and gauge kinetic functs are i i 1V1 loop + VE1 K = log(S + S¯) log[(Ti + T¯i)(Ui + U¯i)] + − , − − ( 2 S + S¯ ) Xi i 4πγi E(iUi, 2) V1 loop = , − 3 Ti + T¯i γ e 2πkpTi ˆ ( ) 2ikp E ( ) V i = i − AK Ui 10 Ui + c.c. , E1 ( )2 + ¯ − ¯ 24( ) π k>j 0, p>0 kp " Ti Ti i i η i # ≥X U − U U a 2πkpTi π(bi + 6γi)Ti a e− a fa = S + bi log η(iUi) f,i( i) . ( 12 − − 2kp A U ) Xi kX,j,p γi are model-dependent. Conclusions

We computed E1 instanton corrections in the T 4/Z • 2× T 2 type I orbifold model : holomorphic corrections f. → non-holomorphic corrections K. → We expect similar results for the . Sup- pose S, U moduli are stabilized and there are field-theory (E5) nonperturbative effects on D9 branes (gaugino condensation, racetrack). Then

B(f+fnp) ∞ 2πnT Wnp = Ae− = A0 dne− nX=1 When combined with suitable fluxes and/or E5 ef- • fects, they generate moduli stabilization and SUSY break- ing, changes in the soft spectra. Similar to the perturbative threshold corrections , the • E1 instantonic corrections to the gauge kinetic func- tions from N = 2 sectors have some universal proper- ties. Similar results therefore for N = 1 models with

N = 2 sectors : Z6, Z60 , etc. S-dual of stringy instantonic effects in type I could • teach us more about the heterotic string dynamics. The instantonic corrections to f and K deserve more • phenomenological studies.