Multi-Instanton and String Loop Corrections in Orbifolds

Multi-Instanton and String Loop Corrections in Orbifolds

Emilian Dudas CPhT-Ecole Polytechnique and LPT-Orsay Multi-instanton and string loop corrections in orbifolds P. Camara E.D, e-Print: arXiv:0806.3102 [hep-th] • (also P. Camara, E.D., T. Maillard, G. Pradisi, Nucl.Phys.B795:453- • 489,2008. e-Print: arXiv:0710.3080 [hep-th]) Outline Motivations • The S-dual orbifold pairs • Thresholds and effective action : type I side • Thresholds and effective action : heterotic side • Comments on E1 instantons • Universality of = 2 instantonic corrections • N Conclusions • july 28, 2008 CERN Institute String Pheno 08 CERN-TH 1. Motivations SO(32) heterotic -type I duality (Polchinski,Witten) was explored extensively over the last ten years. S-duality allows exact computation of E1 instanton ef- fects in type I heterotic α corrections E1 instanton corrections • 0 ! NS5 effects E5 instanton corrections • ! There are simple examples of dual pairs using Vafa- Witten adiabatic argument : freely-acting orbifolds (see Blumenhagen talk). Ex. heterotic-type I duality: higher-derivative in = N 4 SUSY case (Bachas, Kiritsis and coll., Lerche and Stieberger, etc) = 2 case discussed in (Antoniadis,Bachas,Fabre,Partouche N and Taylor; Bianchi, Morales). = 1 models : CDMP, Blumenhagen, Schmidt-Sommerfeld N We will mostly focus today on a standard Z2 orbifold - type I side constructed by Bianchi-Sagnotti and Gimon- Polchinski - heterotic dual pair identified by Berkooz,Leigh,Polchinski,Schwarz, Seiberg,Witten Our goal : computation of the full one-loop + E1 in- stanton corrections to the type I effective action . An important consistency check : comparison of the effective theory Kaplunovsky-Louis formula 2 2 4π ba MP = Refa + ln g2(µ) 4 µ2 c C (G) 4π2 T (r) + a + 2 ln a ln K 2 detZr 4 2 g (µ) − r 2 X where Ta(r) is the Dynkin index for the matter repre- sentation r with wavefunctions Zr, and ba = Ta(r) 3C2(G) ; ca = Ta(r) C2(G) r − r − X X with the one-loop string computation 4π2 4π2 = + Λ where 2 2 a ; ga(µ) ga;0 2 ba Ms ∆a Λa = ln + 4 µ2 4 ∆a encodes string threshold corrections from massive string states. 2. The S-dual orbifold pairs Simplest orbifold T 4=Z T 2, sixteen fixed points. 2 × Type I side - One twisted hypermultiplet per fixed point - Maximal gauge group U(16) U(16) . 9 × 5 Hypers in (120 + 120; 1) + (1; 120 + 120) + (16; 16) In order to have a perturbative heterotic dual, distribute 1=2 D5 brane per fixed point. D5 gauge group broken to U(1)16. Each U(1) gets mixed with twisted four forms and become massive. D9 spectrum : hypers in 120 + 120 + 16 16. × Heterotic dual SO(32) compactified to 4d on T 4=Z T 2. Shift vector 2 × on the gauge lattice 1 V = (1; 1; 3) 4 · · · − The gauge group is U(16). Charged matter is in rep- resentations : untwisted : 120 + 120 twisted : 16 16. × 3. Effective action and quantum corrections : type I side Threshold corrections to gauge couplings depend on moduli of T 2 : pG pG + iG T = + ib ; U = 12 λ G22 One finds (Bachas-Fabre, Antoniadis,Bachas,E.D.) 4π2 4π2 = + Λ where 2 2 a ga (µ) ga;0 1 2 4 Λa = ~b ln[pGµ ReU η(iU) ] −4 j j The effective action is then 2 fD9 = S + ~b ln[ReUη (iU)] + fnp K = ln(S + S¯) ln(U + U¯) ln(T + T¯) + − − − · · · 4π E(iU; 2) + Knp − 3 (T + T¯)(S + S¯) where E(U; k) is the Eisenstein series 1 (Im U)k E(U; k) ≡ ζ(2k) j + j U 2k (j ;j )=(0;0) 1 2 1 2X6 j j Last term in K needs a separate one-loop computation (ABFPT ; Berg,Haack,Kors). We expect E1 instan- tonic contributions 1 2πnT 1 2πnT fnp = gn(U) e− ; Knp = hn(U; T +T¯) e− +c:c: nX=1 nX=1 4. Effective action and quantum corrections : het- erotic side Threshold corrections to gauge couplings are given by (Kaplunovsky) 1=2 α d2τ i 1 # 1 α Λ = β 2 a 4 @τ 0 h i1 Qa C ; τ2 4π η η − 4πτ2! "β # ZF α,β=0 j j X B C @ A α Qa is the charge operator of the gauge group; C β is the internal six-dimensional partition function. h i For the S-dual of the BSGP model we find 1 d2τ Λ = Z^1 ^f −8 τ2 A ZF with 1 24 ^ = (D10E10 48η ) Af −20η24 − and 2 Re T π(Re T ) τ Z^1 = exp 2πT det(A) 1 iU A ; τ2 2− − τ2(Re U) 1! 3 ni;`i − X 4 5 n ` A = 1 1 ; n2 `2! with ni and `i integers. We used methods of Dixon,Kaplunovsky, Louis and Bachas,Kiritsis et al. to evaluate Λ. We find π 2 4 π E(iU1; 2) Λ = Re T1 3log[(Re U1)(Re T1)µ η(iU1) ] 2 − j j − 3 T1 + T¯1 − 1 1 1 ^ ( ) e 2πpkT1 ^ ( ) + AK U + c.c. − 4 − Af U + ¯ k>j 0;p>0 kp " πkpT1 T1# ≥X ^ is the almost-holomorphic modular form, AK 1 2 3 ^ = (E^2E4E6 + 2E + 3E ) AK 12η24 6 4 We have expressed the result in terms of the induced worldvolume complex structure in the E1 multi-instantons wrapping the first 2-torus j + ipU = 1 U k Split between analytic and non-analytic terms ; the cor- rected K¨ahler potential and gauge kinetic function are 3 1V1 loop + VE1 K = log(S + S¯) log[(Ti + T¯i)(Ui + U¯i)] + − ; − − 2 S + S¯ iX=1 4π E(iU1; 2) V1 loop = ; − − 3 T1 + T¯1 e 2πkpT1 ^ ( ) πkp E ( ) V = − AK U 10 U + c:c: ; E1 − ( )2 + ¯ − 2 24( ) k>j 0; p>0 π kp "T1 T1 Re η # ≥X U U πT 1 e 2πkpT1 f = S + 1 12log η(iU ) − ( ) ; U(16) 2 − 1 − 2 Af U k>j 0; p>0 kp ≥X where the holomorphic modular forms and , are Af AK defined as before, replacing E^2 by E2. 5. E1 instantons The instantonic corrections depend on the moduli of T 2 come from E1 instantons wrapping T 2. ! They are of two different types: E1 instantons at orbifold fixed points They have unitary Chan-Paton factors, U(r), with neu- tral sector : - bosonic zero modes xµ, y1;2 and fermionic zero modes Θα,a, Θα,a_ , with a = 1; 2 in the adjoint representation r¯r. α,a - bosonic zero modes y3;4;5;6 and fermionic ones λ in r(r+1) ¯r(¯r+1) the symmetric representation 2 + 2 . - fermionic zero modes ~λα,a_ in the antisymmetric rep- r(r 1) ¯r(¯r 1) resentation 2− + 2− . Charged zero modes between the instanton and the • 1/2 D5-brane stuck at the singularity: -bosonic zero modes µ1;2 from the R sector and fermionic zero modes !α from the NS sector, in the representa- tion r 1 + ¯r1. − r -bosonic zero modes µ10 ;2 in the representation +1 + ¯r 1. − E1-D9 strings : bosonic zero mode ν in the represen- • tation rn¯ + ¯rn. E1 instantons off the orbifold fixed points It can be argued that these instantons do not contribute to threshold corrections. In order the instantons to contribute to the gauge ki- netic function, only four fermionic neutral zero modes should be massless (the \goldstinos" ; Akerblom,Blumenhagen, Lust and Schmidt-Sommerfeld) most of the above ! zero modes should be lifted by interactions. Possible qualitative picture : a U(1) instanton on top of a singularity correspond is • a \gauge" instanton for the U(1) gauge theory inside the corresponding half D5-brane. These instantons are analogous to the ones discussed by Petersson, with the extra fermionic zero modes being lifted by couplings in- volving the D5-branes. They should be responsible for the 1-instanton (N = 1) contribution. For the N-instanton contribution, when all the instan- • tons are on top of the same singularity, the instanton CP is enhanced to U(N) and only four zero modes sur- vive, with the extra zero modes presumably lifted by interactions with the D5-branes. (Dedicated works on lifting of zero modes ; Blumen- hagen,Cvetic,Richter,Weigand; Garcia-Etxebarria and Uranga) 5. Universality of = 2 instantonic corrections N We shall try to generalize the instantonic corrections • to the effective action in case where the heterotic S- dual description is unknown. Framework: orbifold compactifications, with orbifold action G containing subgroups Gi leaving unrotated a given complex plane. The contribution of these sectors to threshold correc- tions : 1 2 d τ ^ ^a Λa = Zi f;i : −8 τ2 A Xi ZF The gauge group is given by a product G = a Ga. Q T , U are moduli of the corresponding unrotated plane • i i ^a M a/η24, with M a an almost holomorphic mod- • Af;i ∼ i i ular form of degree 24. By imposing the absence of tachyons in the spectrum, we obtain a a γi 24 ^ = 2b + D10E10 528η ; Af;i i 20η24 − h i where ba is the β-function coefficient of the = 2 i N gauge theory associated to a would-be T 6=Gi orbifold and γi is a model dependent (but gauge group indepen- dent) coefficient. We get a π(bi + 6γi) πγi E(iUi; 2) Λa = Re Ti + ( 12 3 Ti + T¯i − Xi 1 1 γ ^ ( ) 2πpkTi ^a i K i e− f;i( i) A U + c.c. −4 0 kp "A U − πkp Ti + T¯i # 1 − k>j X0;p>0 @ ≥ a A bi 4 2 log η(iUi) + log[(Re Ui)(Re Ti)µ ] ; − 4 j j ) The K¨ahler potential and gauge kinetic functs are i i 1V1 loop + VE1 K = log(S + S¯) log[(Ti + T¯i)(Ui + U¯i)] + − ; − − ( 2 S + S¯ ) Xi i 4πγi E(iUi; 2) V1 loop = ; − 3 Ti + T¯i γ e 2πkpTi ^ ( ) 2ikp E ( ) V i = i − AK Ui 10 Ui + c.c.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us