Univariate Probability Distributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Efficient Estimation of Parameters of the Negative Binomial Distribution
E±cient Estimation of Parameters of the Negative Binomial Distribution V. SAVANI AND A. A. ZHIGLJAVSKY Department of Mathematics, Cardi® University, Cardi®, CF24 4AG, U.K. e-mail: SavaniV@cardi®.ac.uk, ZhigljavskyAA@cardi®.ac.uk (Corresponding author) Abstract In this paper we investigate a class of moment based estimators, called power method estimators, which can be almost as e±cient as maximum likelihood estima- tors and achieve a lower asymptotic variance than the standard zero term method and method of moments estimators. We investigate di®erent methods of implementing the power method in practice and examine the robustness and e±ciency of the power method estimators. Key Words: Negative binomial distribution; estimating parameters; maximum likelihood method; e±ciency of estimators; method of moments. 1 1. The Negative Binomial Distribution 1.1. Introduction The negative binomial distribution (NBD) has appeal in the modelling of many practical applications. A large amount of literature exists, for example, on using the NBD to model: animal populations (see e.g. Anscombe (1949), Kendall (1948a)); accident proneness (see e.g. Greenwood and Yule (1920), Arbous and Kerrich (1951)) and consumer buying behaviour (see e.g. Ehrenberg (1988)). The appeal of the NBD lies in the fact that it is a simple two parameter distribution that arises in various di®erent ways (see e.g. Anscombe (1950), Johnson, Kotz, and Kemp (1992), Chapter 5) often allowing the parameters to have a natural interpretation (see Section 1.2). Furthermore, the NBD can be implemented as a distribution within stationary processes (see e.g. Anscombe (1950), Kendall (1948b)) thereby increasing the modelling potential of the distribution. -
Relationships Among Some Univariate Distributions
IIE Transactions (2005) 37, 651–656 Copyright C “IIE” ISSN: 0740-817X print / 1545-8830 online DOI: 10.1080/07408170590948512 Relationships among some univariate distributions WHEYMING TINA SONG Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan, Republic of China E-mail: [email protected], wheyming [email protected] Received March 2004 and accepted August 2004 The purpose of this paper is to graphically illustrate the parametric relationships between pairs of 35 univariate distribution families. The families are organized into a seven-by-five matrix and the relationships are illustrated by connecting related families with arrows. A simplified matrix, showing only 25 families, is designed for student use. These relationships provide rapid access to information that must otherwise be found from a time-consuming search of a large number of sources. Students, teachers, and practitioners who model random processes will find the relationships in this article useful and insightful. 1. Introduction 2. A seven-by-five matrix An understanding of probability concepts is necessary Figure 1 illustrates 35 univariate distributions in 35 if one is to gain insights into systems that can be rectangle-like entries. The row and column numbers are modeled as random processes. From an applications labeled on the left and top of Fig. 1, respectively. There are point of view, univariate probability distributions pro- 10 discrete distributions, shown in the first two rows, and vide an important foundation in probability theory since 25 continuous distributions. Five commonly used sampling they are the underpinnings of the most-used models in distributions are listed in the third row. -
Univariate and Multivariate Skewness and Kurtosis 1
Running head: UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 1 Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation Meghan K. Cain, Zhiyong Zhang, and Ke-Hai Yuan University of Notre Dame Author Note This research is supported by a grant from the U.S. Department of Education (R305D140037). However, the contents of the paper do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Correspondence concerning this article can be addressed to Meghan Cain ([email protected]), Ke-Hai Yuan ([email protected]), or Zhiyong Zhang ([email protected]), Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556. UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 2 Abstract Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74% of univariate distributions and 68% multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. -
Characterization of the Bivariate Negative Binomial Distribution James E
Journal of the Arkansas Academy of Science Volume 21 Article 17 1967 Characterization of the Bivariate Negative Binomial Distribution James E. Dunn University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Other Applied Mathematics Commons Recommended Citation Dunn, James E. (1967) "Characterization of the Bivariate Negative Binomial Distribution," Journal of the Arkansas Academy of Science: Vol. 21 , Article 17. Available at: http://scholarworks.uark.edu/jaas/vol21/iss1/17 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 21 [1967], Art. 17 77 Arkansas Academy of Science Proceedings, Vol.21, 1967 CHARACTERIZATION OF THE BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION James E. Dunn INTRODUCTION The univariate negative binomial distribution (also known as Pascal's distribution and the Polya-Eggenberger distribution under vari- ous reparameterizations) has recently been characterized by Bartko (1962). Its broad acceptance and applicability in such diverse areas as medicine, ecology, and engineering is evident from the references listed there. -
Univariate Statistics Summary
Univariate Statistics Summary Further Maths Univariate Statistics Summary Types of Data Data can be classified as categorical or numerical. Categorical data are observations or records that are arranged according to category. For example: the favourite colour of a class of students; the mode of transport that each student uses to get to school; the rating of a TV program, either “a great program”, “average program” or “poor program”. Postal codes such as “3011”, “3015” etc. Numerical data are observations based on counting or measurement. Calculations can be performed on numerical data. There are two main types of numerical data Discrete data, which takes only fixed values, usually whole numbers. Discrete data often arises as the result of counting items. For example: the number of siblings each student has, the number of pets a set of randomly chosen people have or the number of passengers in cars that pass an intersection. Continuous data can take any value in a given range. It is usually a measurement. For example: the weights of students in a class. The weight of each student could be measured to the nearest tenth of a kg. Weights of 84.8kg and 67.5kg would be recorded. Other examples of continuous data include the time taken to complete a task or the heights of a group of people. Exercise 1 Decide whether the following data is categorical or numerical. If numerical decide if the data is discrete or continuous. 1. 2. Page 1 of 21 Univariate Statistics Summary 3. 4. Solutions 1a Numerical-discrete b. Categorical c. Categorical d. -
Field Guide to Continuous Probability Distributions
Field Guide to Continuous Probability Distributions Gavin E. Crooks v 1.0.0 2019 G. E. Crooks – Field Guide to Probability Distributions v 1.0.0 Copyright © 2010-2019 Gavin E. Crooks ISBN: 978-1-7339381-0-5 http://threeplusone.com/fieldguide Berkeley Institute for Theoretical Sciences (BITS) typeset on 2019-04-10 with XeTeX version 0.99999 fonts: Trump Mediaeval (text), Euler (math) 271828182845904 2 G. E. Crooks – Field Guide to Probability Distributions Preface: The search for GUD A common problem is that of describing the probability distribution of a single, continuous variable. A few distributions, such as the normal and exponential, were discovered in the 1800’s or earlier. But about a century ago the great statistician, Karl Pearson, realized that the known probabil- ity distributions were not sufficient to handle all of the phenomena then under investigation, and set out to create new distributions with useful properties. During the 20th century this process continued with abandon and a vast menagerie of distinct mathematical forms were discovered and invented, investigated, analyzed, rediscovered and renamed, all for the purpose of de- scribing the probability of some interesting variable. There are hundreds of named distributions and synonyms in current usage. The apparent diver- sity is unending and disorienting. Fortunately, the situation is less confused than it might at first appear. Most common, continuous, univariate, unimodal distributions can be orga- nized into a small number of distinct families, which are all special cases of a single Grand Unified Distribution. This compendium details these hun- dred or so simple distributions, their properties and their interrelations. -
Probability Distributions Used in Reliability Engineering
Probability Distributions Used in Reliability Engineering Probability Distributions Used in Reliability Engineering Andrew N. O’Connor Mohammad Modarres Ali Mosleh Center for Risk and Reliability 0151 Glenn L Martin Hall University of Maryland College Park, Maryland Published by the Center for Risk and Reliability International Standard Book Number (ISBN): 978-0-9966468-1-9 Copyright © 2016 by the Center for Reliability Engineering University of Maryland, College Park, Maryland, USA All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from The Center for Reliability Engineering, Reliability Engineering Program. The Center for Risk and Reliability University of Maryland College Park, Maryland 20742-7531 In memory of Willie Mae Webb This book is dedicated to the memory of Miss Willie Webb who passed away on April 10 2007 while working at the Center for Risk and Reliability at the University of Maryland (UMD). She initiated the concept of this book, as an aid for students conducting studies in Reliability Engineering at the University of Maryland. Upon passing, Willie bequeathed her belongings to fund a scholarship providing financial support to Reliability Engineering students at UMD. Preface Reliability Engineers are required to combine a practical understanding of science and engineering with statistics. The reliability engineer’s understanding of statistics is focused on the practical application of a wide variety of accepted statistical methods. Most reliability texts provide only a basic introduction to probability distributions or only provide a detailed reference to few distributions. -
Understanding PROC UNIVARIATE Statistics Wendell F
116 Beginning Tutorials Understanding PROC UNIVARIATE Statistics Wendell F. Refior, Paul Revere Insurance Group · Introduction Missing Value Section The purpose of this presentation is to explain the This section is displayed only if there is at least one llasic statistics reported in PROC UNIVARIATE. missing value. analysis An intuitive and graphical approach to data MISSING VALUE - This shows which charac is encouraged, but this text will limit the figures to be ter represents a missing value. For numeric vari The used in the oral presentation to conserve space. ables, lhe default missing value is of course the author advises that data inspection and cleaning decimal point or "dot". Other values may have description. should precede statistical analysis and been used ranging from .A to :Z. John W. Tukey'sErploratoryDataAnalysistoolsare Vt:C'f helpful for preliminary data inspection. H the COUNT- The number shown by COUNT is the values of your data set do not conform to a bell number ofoccurrences of missing. Note lhat the shaped curve, as does the normal distribution, the NMISS oulput variable contains this number, if question of transforming the values prior to analysis requested. is raised. Then key summary statistics are nexL % COUNT/NOBS -The number displayed is the statistical Brief mention will be made of problem of percentage of all observations for which the vs. practical significance, and the topics of statistical analysis variable has a missing value. It may be estimation and hYPQ!hesis testing. The Schlotzhauer calculated as follows: ROUND(100 • ( NMISS and Littell text,SAs® System/or Elementary Analysis I (N + NMISS) ), .01). -
Some Statistical Aspects of Spatial Distribution Models for Plants and Trees
STUDIA FORESTALIA SUECICA Some Statistical Aspects of Spatial Distribution Models for Plants and Trees PETER DIGGLE Department of Operational Efficiency Swedish University of Agricultural Sciences S-770 73 Garpenberg. Sweden SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES COLLEGE OF FORESTRY UPPSALA SWEDEN Abstract ODC 523.31:562.6/46 The paper is an account of some stcctistical ur1alysrs carried out in coniur~tionwith a .silvicultural research project in the department of Oi_leruriotzal Efficiency. College of Forestry, Gcwpenberg. Sweden (Erikssorl, L & Eriksson. 0 in prepuratiotz 1981). 1~ Section 2, u statbtic due ro Morurz (19501 is irsed to detect spafiul intercccriorl amongst coutlts of the ~u~rnbersof yo14119 trees in stimple~~lo~slaid out in a systelnntic grid arrangement. Section 3 discusses the corlstruction of hivuriate disrrtbutions for the numbers of~:ild and plunted trees in a sample plot. Sectiorc 4 comiders the relutionship between the distributions of the number oj trees in a plot arld their rota1 busal area. Secrion 5 is a review of statistical nlerhodc for xte in cot~tlectiorz w~thpreliminai~ surveys of large areas of forest. In purticular, Secrion 5 dzscusses tests or spurrnl randotnness for a sillgle species, tests of independence betwren two species, and estimation of the number of trees per unit urea. Manuscr~ptrecelved 1981-10-15 LFIALLF 203 82 003 ISBN 9 1-38-07077-4 ISSN 0039-3150 Berllngs, Arlov 1982 Preface The origin of this report dates back to 1978. At this time Dr Peter Diggle was employed as a guest-researcher at the College. The aim of Dr Diggle's work at the College was to introduce advanced mathematical and statistical models in forestry research. -
Multivariate Distributions
IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing1 in particular on multivariate normal, normal-mixture, spherical and elliptical distributions. In addition to studying their properties, we will also discuss techniques for simulating and, very briefly, estimating these distributions. Familiarity with these important classes of multivariate distributions is important for many aspects of risk management. We will defer the study of copulas until later in the course. 1 Preliminary Definitions Let X = (X1;:::Xn) be an n-dimensional vector of random variables. We have the following definitions and statements. > n Definition 1 (Joint CDF) For all x = (x1; : : : ; xn) 2 R , the joint cumulative distribution function (CDF) of X satisfies FX(x) = FX(x1; : : : ; xn) = P (X1 ≤ x1;:::;Xn ≤ xn): Definition 2 (Marginal CDF) For a fixed i, the marginal CDF of Xi satisfies FXi (xi) = FX(1;:::; 1; xi; 1;::: 1): It is straightforward to generalize the previous definition to joint marginal distributions. For example, the joint marginal distribution of Xi and Xj satisfies Fij(xi; xj) = FX(1;:::; 1; xi; 1;:::; 1; xj; 1;::: 1). If the joint CDF is absolutely continuous, then it has an associated probability density function (PDF) so that Z x1 Z xn FX(x1; : : : ; xn) = ··· f(u1; : : : ; un) du1 : : : dun: −∞ −∞ Similar statements also apply to the marginal CDF's. A collection of random variables is independent if the joint CDF (or PDF if it exists) can be factored into the product of the marginal CDFs (or PDFs). If > > X1 = (X1;:::;Xk) and X2 = (Xk+1;:::;Xn) is a partition of X then the conditional CDF satisfies FX2jX1 (x2jx1) = P (X2 ≤ x2jX1 = x1): If X has a PDF, f(·), then it satisfies Z xk+1 Z xn f(x1; : : : ; xk; uk+1; : : : ; un) FX2jX1 (x2jx1) = ··· duk+1 : : : dun −∞ −∞ fX1 (x1) where fX1 (·) is the joint marginal PDF of X1. -
Univariate Analysis and Normality Test Using SAS, STATA, and SPSS
© 2002-2006 The Trustees of Indiana University Univariate Analysis and Normality Test: 1 Univariate Analysis and Normality Test Using SAS, STATA, and SPSS Hun Myoung Park This document summarizes graphical and numerical methods for univariate analysis and normality test, and illustrates how to test normality using SAS 9.1, STATA 9.2 SE, and SPSS 14.0. 1. Introduction 2. Graphical Methods 3. Numerical Methods 4. Testing Normality Using SAS 5. Testing Normality Using STATA 6. Testing Normality Using SPSS 7. Conclusion 1. Introduction Descriptive statistics provide important information about variables. Mean, median, and mode measure the central tendency of a variable. Measures of dispersion include variance, standard deviation, range, and interquantile range (IQR). Researchers may draw a histogram, a stem-and-leaf plot, or a box plot to see how a variable is distributed. Statistical methods are based on various underlying assumptions. One common assumption is that a random variable is normally distributed. In many statistical analyses, normality is often conveniently assumed without any empirical evidence or test. But normality is critical in many statistical methods. When this assumption is violated, interpretation and inference may not be reliable or valid. Figure 1. Comparing the Standard Normal and a Bimodal Probability Distributions Standard Normal Distribution Bimodal Distribution .4 .4 .3 .3 .2 .2 .1 .1 0 0 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 T-test and ANOVA (Analysis of Variance) compare group means, assuming variables follow normal probability distributions. Otherwise, these methods do not make much http://www.indiana.edu/~statmath © 2002-2006 The Trustees of Indiana University Univariate Analysis and Normality Test: 2 sense. -
Student Activity 2: Basic Statistical Analysis with SAS
Math 4220 Dr. Zeng Student Activity 2: Basic Statistical Analysis with SAS 1. Visualizing Your Data Example 1: The Toluca Company manufactures refrigeration equipment as well as many replacement parts. In the past, one of the replacement parts has been produced periodically in lots of varying sizes. When a cost improvement program was undertaken, company officials wished to determine the optimum lot size for producing this part. This data set can be found on http://www.csub.edu/~bzeng/4220/activities.shtml Creating Histograms and Density Curves To show the distribution of continues data, you can use histogram. In a histogram, the data are divided into discrete interval called bins. To create a histogram chart, use a “histogram” statement with this general form: proc sgplot; histogram variable-name/options; You can also plot density curves for your data. The basic form a density statement is: proc sgplot; density variable-name/options; SAS CODE 1: proc sgplot data=Toluca; histogram Hours; density Hours; /*default setting is normal */ density Hours/ type=kernel; /*specifies the type of distribution: kernel */ run; Math 4220 Dr. Zeng Remark: the bar charts show the distribution of categorical data. To graph a bar chart, we just need to replace histogram statement by vbar statement. Everything else is the same. Creating Box Plots Like histograms, box plots show the distribution of continuous data. It contains the following information: minimum, first quartile, median, mean, third quartile, maximum, outliers. To create a vertical box plot, use a vbox statement like this: proc sgplot; vbox variable-name/options; /* use “hbox” statement if you like a horizontal box plot*/ Example 2: This example contains the variables Subj (ID values for each subject), Drug (with values of Placebo, Drug A, or Drug B), SBP (systolic blood pressure), DBP (diastolic blood pressure), and Gender (with M or F).