Pharmacological Aspects of the Neuroprotective Effects Of

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacological Aspects of the Neuroprotective Effects Of Journal of Neural Transmission https://doi.org/10.1007/s00702-018-1853-9 NEUROLOGY AND PRECLINICAL NEUROLOGICAL STUDIES - REVIEW ARTICLE Pharmacological aspects of the neuroprotective efects of irreversible MAO‑B inhibitors, selegiline and rasagiline, in Parkinson’s disease Éva Szökő1 · Tamás Tábi1 · Peter Riederer2 · László Vécsei3,4 · Kálmán Magyar1 Received: 4 January 2018 / Accepted: 31 January 2018 © Springer-Verlag GmbH Austria, part of Springer Nature 2018 Abstract The era of MAO-B inhibitors dates back more than 50 years. It began with Kálmán Magyar’s outstanding discovery of the selective inhibitor, selegiline. This compound is still regarded as the gold standard of MAO-B inhibition, although newer drugs have also been introduced to the feld. It was revealed early on that selective, even irreversible inhibition of MAO-B is free from the severe side efect of the non-selective MAO inhibitors, the potentiation of tyramine, resulting in the so-called ‘cheese efect’. Since MAO-B is involved mainly in the degradation of dopamine, the inhibitors lack any antidepressant efect; however, they became frst-line medications for the therapy of Parkinson’s disease based on their dopamine-sparing activity. Extensive studies with selegiline indicated its complex pharmacological activity profle with MAO-B-independent mechanisms involved. Some of these benefcial efects, such as neuroprotective and antiapoptotic properties, were connected to its propargylamine structure. The second MAO-B inhibitor approved for the treatment of Parkinson’s disease, rasagiline also possesses this structural element and shows similar pharmacological characteristics. The preclinical studies performed with selegiline and rasagiline are summarized in this review. Keywords MAO-B inhibition · Selegiline · Rasagiline · Neuroprotection Introduction inhibitor in the 1960s (Knoll et al. 1965). The R-(−)-isomer of deprenyl, later called selegiline, was identifed as the The inhibitors of the catecholamine-degrading enzyme, more potent MAO inhibitor (Magyar et al. 1967). In 1968, monoamine oxidase (MAO), have long established thera- Johnston discovered that the enzyme is heterogeneous and peutic use. Deprenyl was frst synthesized as a psychic ener- the isoform inhibited more potently by clorgyline was named gizer (Varga and Tringer 1967), tested for antidepressant MAO-A (Johnston 1968). Magyar and Knoll subsequently efects and later on characterized as an irreversible MAO found that selegiline is also a selective inhibitor, preferen- tially afecting the other isoform called MAO-B (Knoll and Magyar 1972). Because of diferent substrate specifcity and In memory of Professor Kálmán Magyar (1933–2017) tissue distribution of the two isoenzymes, their physiologi- Kálmán Magyar : Deceased. cal roles difer considerably. The well-known antidepressant efect of the previously used non-selective MAO inhibitors * László Vécsei was found to be the consequence of blocking MAO-A activ- [email protected]‑szeged.hu ity. The irreversible inhibition of MAO-A, however, is also 1 Department of Pharmacodynamics, Semmelweis University, responsible for their severe adverse efect, the life-threaten- Nagyvárad tér 4, Budapest 1089, Hungary ing hypertensive crisis after the consumption of tyramine- 2 Center of Mental Health, Department of Psychiatry, rich meals. This was named ‘cheese efect’ because of the Psychosomatics and Psychotherapy, University Hospital high tyramine content of cheese products. Selegiline, in its Würzburg, Magarete‑Höppel‑Platz 1, 97080 Würzburg, selective MAO-B inhibitory dose, is free from this danger- Germany ous side efect (Knoll et al. 1968) but also lacks antidepres- 3 Department of Neurology, University of Szeged, sant activity. As it preferentially reduces the degradation Semmelweis u. 6, Szeged 6725, Hungary of dopamine in the central nervous system (Riederer et al. 4 MTA-SZTE Neuroscience Research Group, Semmelweis 1978), it gained importance in the treatment of Parkinson’s u. 6, Szeged 6725, Hungary Vol.:(0123456789)1 3 É. Szökő et al. disease from 1975 (Birkmayer et al. 1975, 1977; Parkinson In following studies, the efcacy of selegiline against the Study Group 1993). active toxin MPP+ was analyzed in various experimental The distribution of MAO isoenzymes in the brain was designs. First, Mytilineou and Cohen reported that selegiline extensively studied in post-mortem tissues by Riederer and pretreatment prevented the dopamine depletion induced by co-workers. MAO-B was shown predominantly in the glia MPP+ in rat embryonic midbrain neuronal culture (Mytili- (Konradi et al. 1989) and its activity was raised in aged neou and Cohen 1985). On the other hand, this efect was patients (Kornhuber et al. 1989). In post-mortem brain stud- not confrmed in the study by Vaglini et al. (1996). The ies, increased dopamine (Riederer and Youdim 1986), and results of the in vivo animal experiments were also con- especially phenylethylamine levels, (Riederer et al. 1984), troversial; failure, partial efect, and prevention of deple- were found in the nigrostriatal system of selegiline-treated tion by selegiline were reported alike (Bradbury et al. 1985; parkinsonian patients. Based on these fndings, it was sug- Mihatsch et al. 1988; Vizuete et al. 1993). In these studies, gested that the catecholamine-releasing efect of the elevated the MPP+-induced toxicity was followed by striatal dopa- phenylethylamine may contribute to the dopamine-sparing mine depletion, but this did not necessarily correspond to activity of selegiline (Reynolds et al. 1978; Youdim and the dopaminergic cell loss. Riederer 1993). MPP+ was identifed as a mitochondrial toxin in dopa- Since it was found that selegiline was able to reduce oxi- minergic neurons (Nicklas et al. 1985; Heikkila et al. 1985). dative stress (Cohen and Spina 1989) and prevent the dopa- It inhibits the activity of Complex I of the electron transport mine-depleting efect of the neurotoxin 1-methyl-4-phenyl- chain (Nicklas et al. 1987) which results in compromised 1,2,3,6-tetrahydropyridine (MPTP) (Langston et al. 1984; energy production (Mizuno et al. 1987) and increased oxi- Cohen et al. 1984), further studies were initiated to clarify dative stress (Cleeter et al. 1992). Similar alterations can its pharmacological properties. The results of these experi- be induced by the decreased Complex I expression found ments indicated possible MAO-B inhibition-independent in post-mortem Parkinsonian brain (Mizuno et al. 1989; neuroprotective, antiapoptotic, neurorescue activities, and Schapira et al. 1989; Reichmann and Riederer 1989) along the importance of the propargylamine moiety in these with its increased iron content (Sian-Hülsmann et al. 2011) efects. About 30 years later, rasagiline, another MAO-B causing signifcant oxidative damage. An additional source inhibitor with propargylamine structure, was introduced into of enhanced oxygen free radical generation is the auto-oxi- the therapy of Parkinson’s disease. The pharmacological dation of the enormous amount of dopamine released after studies aiming to understand the neuroprotective, antiapop- toxin-induced cell damage. The suggested components of totic and neurorescue efects of these two drugs are reviewed the protective efect of MAO-B inhibitors against MPTP and discussed in this paper. toxicity are summarized in Fig. 1. To obtain further information about the supposed protec- tive efect of selegiline, the involvement of its suggested antioxidant properties (Cohen and Spina 1989; Gotz et al. Protective efect of selegiline 1995) was studied. Although inhibition of MAO-B itself against neurotoxins reduces hydrogen peroxide production, other components of its antioxidant activity were also hypothesized. As early The dopaminergic neurotoxin, MPTP, was discovered acci- as 1989 Knoll reported that chronic selegiline treatment of dentally when rapid onset and severe Parkinson’s syndrome aged rats enhanced the activity of superoxide dismutase developed in a drug addict using an in-house synthesized in the striatum (Knoll 1989). This was later confrmed by pethidine analogue. Later on, the nigrostriatal damage Carillo et al. in young animals, as well. Furthermore, in induced by the compound was also confrmed (Davis et al. addition to superoxide dismutase, increased catalase activ- 1979). It was soon found that MAO-B inhibitors, pargyline ity was also observed (Carrillo et al. 1991). In another study, and selegiline, prevented MPTP toxicity, suggesting the increased antioxidant enzyme activity after selegiline treat- involvement of MAO-B in the conversion of pro-toxin ment could only be measured in the striatum of aged rats. MPTP to its active form, 1-methyl-4-phenyl-pyridinium Besides the antioxidant enzymes, the level of glutathione (MPP+) (Langston et al. 1984; Cohen et al. 1984). Subse- was found to be elevated. No efect was detected in the cor- quently, it was also shown that MPP + generated by MAO-B tex or hippocampus or any brain regions of young animals can enter into and damage dopaminergic neurons and is (Takahata et al. 2006). In in vitro cell culture experiments, responsible for MPTP toxicity. Besides MAO inhibitors, it was shown that selegiline treatment, similar to nerve dopamine uptake blockers also provided protection, indi- growth factor (NGF), dose-dependently induced superox- cating the prominent role of this transporter in the selec- ide dismutase mRNA expression. Selegiline also potentiated tive accumulation of the toxin (Fuller and Hemrick-Luecke the efect of NGF, which
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas Et Al
    US 20130253 056A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas et al. (43) Pub. Date: Sep. 26, 2013 (54) CONTINUOUS ADMINISTRATION OF (60) Provisional application No. 61/179,511, filed on May LEVODOPA AND/OR DOPA 19, 2009. DECARBOXYLASE INHIBITORS AND COMPOSITIONS FOR SAME Publication Classification (71) Applicant: NEURODERM, LTD., Ness-Ziona (IL) (51) Int. Cl. A63L/216 (2006.01) (72) Inventors: Mara Nemas, Gedera (IL); Oron (52) U.S. Cl. Yacoby-Zeevi, Moshav Bitsaron (IL) CPC .................................... A6 IK3I/216 (2013.01) USPC .......................................................... 514/538 (73) Assignee: Neuroderm, Ltd., Ness-Ziona (IL) (57) ABSTRACT (21) Appl. No.: 13/796,232 Disclosed herein are for example, liquid aqueous composi (22) Filed: Mar 12, 2013 tions that include for example an ester or salt of levodopa, or an ester or salt of carbidopa, and methods for treating neuro Related U.S. Application Data logical or movement diseases or disorders such as restless leg (63) Continuation-in-part of application No. 12/961,534, syndrome, Parkinson's disease, secondary parkinsonism, filed on Dec. 7, 2010, which is a continuation of appli Huntington's disease, Parkinson's like syndrome, PSP. MSA, cation No. 12/836,130, filed on Jul. 14, 2010, now Pat. ALS, Shy-Drager syndrome, dystonia, and conditions result No. 7,863.336, which is a continuation of application ing from brain injury including carbon monoxide or manga No. 12/781,357, filed on May 17, 2010, now Pat. No. nese intoxication, using Substantially continuous administra 8,193,243. tion of levodopa and/or carbidopa or ester and/or salt thereof.
    [Show full text]
  • Parkinson Disease-Associated Cognitive Impairment
    PRIMER Parkinson disease-associated cognitive impairment Dag Aarsland 1,2 ✉ , Lucia Batzu 3, Glenda M. Halliday 4, Gert J. Geurtsen 5, Clive Ballard 6, K. Ray Chaudhuri 3 and Daniel Weintraub7,8 Abstract | Parkinson disease (PD) is the second most common neurodegenerative disorder, affecting >1% of the population ≥65 years of age and with a prevalence set to double by 2030. In addition to the defining motor symptoms of PD, multiple non-motor symptoms occur; among them, cognitive impairment is common and can potentially occur at any disease stage. Cognitive decline is usually slow and insidious, but rapid in some cases. Recently, the focus has been on the early cognitive changes, where executive and visuospatial impairments are typical and can be accompanied by memory impairment, increasing the risk for early progression to dementia. Other risk factors for early progression to dementia include visual hallucinations, older age and biomarker changes such as cortical atrophy, as well as Alzheimer-type changes on functional imaging and in cerebrospinal fluid, and slowing and frequency variation on EEG. However, the mechanisms underlying cognitive decline in PD remain largely unclear. Cortical involvement of Lewy body and Alzheimer-type pathologies are key features, but multiple mechanisms are likely involved. Cholinesterase inhibition is the only high-level evidence-based treatment available, but other pharmacological and non-pharmacological strategies are being tested. Challenges include the identification of disease-modifying therapies as well as finding biomarkers to better predict cognitive decline and identify patients at high risk for early and rapid cognitive impairment. Parkinson disease (PD) is the most common movement The full spectrum of cognitive impairment occurs in disorder and the second most common neurodegenera­ individuals with PD, from subjective cognitive decline tive disorder after Alzheimer disease (AD).
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Questions in the Chemical Enzymology of MAO
    Review Questions in the Chemical Enzymology of MAO Rona R. Ramsay 1,* and Alen Albreht 2 1 Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK 2 Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)-1334-474740 Abstract: We have structure, a wealth of kinetic data, thousands of chemical ligands and clinical information for the effects of a range of drugs on monoamine oxidase activity in vivo. We have comparative information from various species and mutations on kinetics and effects of inhibition. Nevertheless, there are what seem like simple questions still to be answered. This article presents a brief summary of existing experimental evidence the background and poses questions that remain intriguing for chemists and biochemists researching the chemical enzymology of and drug design for monoamine oxidases (FAD-containing EC 4.1.3.4). Keywords: chemical mechanism; kinetic mechanism; oxidation; protein flexibility; cysteine modifica- tion; reversible/irreversible inhibition; molecular dynamics; simulation 1. Introduction Monoamine oxidase (E.C. 1.4.3.4) enzymes MAO A and MAO B are FAD-containing Citation: Ramsay, R.R.; Albreht, A. proteins located on the outer face of the mitochondrial inner membrane, retained there Questions in the Chemical Enzymology of MAO. Chemistry 2021, by hydrophobic interactions and a transmembrane helix. The redox co-factor (FAD) is 3, 959–978. https://doi.org/10.3390/ covalently attached to a cysteine and buried deep inside the protein [1].
    [Show full text]
  • Azilect, INN-Rasagiline
    SCIENTIFIC DISCUSSION 1. Introduction AZILECT is indicated for the treatment of idiopathic Parkinson’s disease (PD) as monotherapy (without levodopa) or as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Rasagiline is administered orally, at a dose of 1 mg once daily with or without levodopa. Parkinson’s disease is a common neurodegenerative disorder typified by loss of dopaminergic neurones from the basal ganglia, and by a characteristic clinical syndrome with cardinal physical signs of resting tremor, bradikinesia and rigidity. The main treatment aims at alleviating symptoms through a balance of anti-cholinergic and dopaminergic drugs. Parkinson’s disease (PD) treatment is complex due to the progressive nature of the disease, and the array of motor and non-motor features combined with early and late side effects associated with therapeutic interventions. Rasagiline is a chemical inhibitor of the enzyme monoamine oxidase (MAO) type B which has a major role in the inactivation of biogenic and diet-derived amines in the central nervous system. MAO has two isozymes (types A and B) and type B is responsible for metabolising dopamine in the central nervous system; as dopamine deficiency is the main contributing factor to the clinical manifestations of Parkinson’s disease, inhibition of MAO-B should tend to restore dopamine levels towards normal values and this improve the condition. Rasagiline was developed for the symptomatic treatment of Parkinson’s disease both as monotherapy in early disease and as adjunct therapy to levodopa + aminoacids decarboxylase inhibitor (LD + ADI) in patients with motor fluctuations. 2. Quality Introduction Drug Substance • Composition AZILECT contains rasagiline mesylate as the active substance.
    [Show full text]
  • Evidence That Formulations of the Selective MAO-B Inhibitor, Selegiline, Which Bypass First-Pass Metabolism, Also Inhibit MAO-A in the Human Brain
    Neuropsychopharmacology (2015) 40, 650–657 OPEN & 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 www.neuropsychopharmacology.org Evidence that Formulations of the Selective MAO-B Inhibitor, Selegiline, which Bypass First-Pass Metabolism, also Inhibit MAO-A in the Human Brain Joanna S Fowler*,1, Jean Logan2, Nora D Volkow3,4, Elena Shumay4, Fred McCall-Perez5, Millard Jayne4, Gene-Jack Wang4, David L Alexoff1, Karen Apelskog-Torres4, Barbara Hubbard1, Pauline Carter1, 1 6 7 4 1 1 4 Payton King , Stanley Fahn , Michelle Gilmor , Frank Telang , Colleen Shea , Youwen Xu and Lisa Muench 1Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA; 2New York University Langone Medical Center, Department of Radiology, New York, NY, USA; 3National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 4 5 USA; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; Targeted Medical Pharma Inc, 6 7 Los Angeles, CA, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Novartis Pharmaceuticals, East Hanover, NJ, USA Selegiline (L-deprenyl) is a selective, irreversible inhibitor of monoamine oxidase B (MAO-B) at the conventional dose (10 mg/day oral) that is used in the treatment of Parkinson’s disease. However, controlled studies have demonstrated antidepressant activity for high doses of oral selegiline and for transdermal selegiline suggesting that when plasma levels of selegiline are elevated, brain MAO-A might also be inhibited. Zydis selegiline (Zelapar) is an orally disintegrating formulation of selegiline, which is absorbed through the buccal mucosa producing higher plasma levels of selegiline and reduced amphetamine metabolites compared with equal doses of conventional selegiline.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • 3 Drugs That May Cause Delirium Or Problem Behaviors CARD 03 19 12 JUSTIFIED.Pub
    Drugs that May Cause Delirium or Problem Behaviors Drugs that May Cause Delirium or Problem Behaviors This reference card lists common and especially problemac drugs that may Ancholinergics—all drugs on this side of the card. May impair cognion cause delirium or contribute to problem behaviors in people with demena. and cause psychosis. Drugs available over‐the‐counter marked with * This does not always mean the drugs should not be used, and not all such drugs are listed. If a paent develops delirium or has new problem Tricyclic Andepressants Bladder Anspasmodics behaviors, a careful review of all medicaons is recommended. Amitriptyline – Elavil Darifenacin – Enablex Be especially mindful of new medicaons. Clomipramine – Anafranil Flavoxate – Urispas Desipramine – Norpramin Anconvulsants Psychiatric Oxybutynin – Ditropan Doxepin – Sinequan Solifenacin – VESIcare All can cause delirium, e.g. All psychiatric medicaons should be Imipramine – Tofranil Tolterodine – Detrol Carbamazepine – Tegretol reviewed as possible causes, as Nortriptyline – Aventyl, Pamelor Gabapenn – Neuronn effects are unpredictable. Trospium – Sanctura Anhistamines / Allergy / Leveracetam – Keppra Notable offenders include: Insomnia / Sleep Valproic acid – Depakote Benzodiazepines e.g. Cough & Cold Medicines *Diphenhydramine – Sominex, ‐Alprazolam – Xanax *Azelasne – Astepro Pain Tylenol‐PM, others ‐Clonazepam – Klonopin *Brompheniramine – Bromax, All opiates can cause delirium if dose *Doxylamine – Unisom, Medi‐Sleep ‐Lorazepam – Avan Bromfed, Lodrane is too high or
    [Show full text]
  • Drug-Induced Movement Disorders
    Medical Management of Early PD Samer D. Tabbal, M.D. May 2016 Associate Professor of Neurology Director of The Parkinson Disease & Other Movement Disorders Program Mobile: +961 70 65 89 85 email: [email protected] Conflict of Interest Statement No drug company pays me any money Outline So, you diagnosed Parkinson disease .Natural history of the disease .When to start drug therapy? .Which drug to use first for symptomatic treatment? ● Levodopa vs dopamine agonist vs MAOI Natural History of Parkinson Disease Before levodopa: Death within 10 years After levodopa: . “Honeymoon” period (~ 5-7 years) . Motor (ON/OFF) fluctuations & dyskinesias: ● Drug therapy effective initially ● Surgical intervention by 10-15 years - Deep brain stimulation (DBS) therapy Motor Response Dyskinesia 5-7 yrs >10 yrs Dyskinesia ON state ON state OFF state OFF state time time Several days Several hours 1-2 hour Natural History of Parkinson Disease Prominent gait impairment and autonomic symptoms by 20-25 years (Merola 2011) Behavioral changes before or with motor symptoms: . Sleep disorders . Depression . Anxiety . Hallucinations, paranoid delusions Dementia at anytime during the illness . When prominent or early: diffuse Lewy body disease Symptoms of Parkinson Disease Motor Symptoms Sensory Symptoms Mental Symptoms: . Cognitive and psychiatric Autonomic Symptoms Presenting Symptoms of Parkinson Disease Mood disorders: depression and lack of motivation Sleep disorders: “acting out dreams” and nightmares Early motor symptoms: Typically Unilateral . Rest tremor: chin, arms or legs or “inner tremor” . Bradykinesia: focal and generalized slowness . Rigidity: “muscle stiffness or ache” Also: (usually no early postural instability) . Facial masking with hypophonia: “does not smile anymore” or “looks unhappy all the time” .
    [Show full text]
  • Treatment Options for Motor and Non-Motor Symptoms of Parkinson’S Disease
    biomolecules Review Treatment Options for Motor and Non-Motor Symptoms of Parkinson’s Disease Frank C. Church Department of Pathology and Laboratory Medicine, The University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] Abstract: Parkinson’s disease (PD) usually presents in older adults and typically has both motor and non-motor dysfunctions. PD is a progressive neurodegenerative disorder resulting from dopamin- ergic neuronal cell loss in the mid-brain substantia nigra pars compacta region. Outlined here is an integrative medicine and health strategy that highlights five treatment options for people with Parkinson’s (PwP): rehabilitate, therapy, restorative, maintenance, and surgery. Rehabilitating begins following the diagnosis and throughout any additional treatment processes, especially vis-à-vis consulting with physical, occupational, and/or speech pathology therapist(s). Therapy uses daily administration of either the dopamine precursor levodopa (with carbidopa) or a dopamine ago- nist, compounds that preserve residual dopamine, and other specific motor/non-motor-related compounds. Restorative uses strenuous aerobic exercise programs that can be neuroprotective. Maintenance uses complementary and alternative medicine substances that potentially support and protect the brain microenvironment. Finally, surgery, including deep brain stimulation, is pursued when PwP fail to respond positively to other treatment options. There is currently no cure for PD. In conclusion, the best strategy for treating PD is to hope to slow disorder progression and strive to achieve stability with neuroprotection. The ultimate goal of any management program is to improve the quality-of-life for a person with Parkinson’s disease.
    [Show full text]
  • Re-Submission Rasagiline 1Mg Tablet (Azilectò) (No
    Scottish Medicines Consortium Re-Submission rasagiline 1mg tablet (AzilectÒ) (No. 255/06) Lundbeck Ltd / Teva Pharmaceuticals Ltd 10 November 2006 The Scottish Medicines Consortium (SMC) has completed its assessment of the above product and advises NHS Boards and Area Drug and Therapeutic Committees (ADTCs) on its use in NHS Scotland. The advice is summarised as follows: ADVICE: following a resubmission rasagiline (AzilectÒ) is not recommended within NHS Scotland for the treatment of idiopathic Parkinson’s disease as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Rasagiline reduces off-time in patients with Parkinson’s disease and end of dose fluctuations on levodopa, similar to reductions shown with the less effective of two currently marketed catechol-O-methyl transferase inhibitors. The economic case has not been demonstrated. Overleaf is the detailed advice on this product. Chairman Scottish Medicines Consortium 1 Indication Treatment of idiopathic Parkinson’s disease as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Dosing information 1mg once daily Product availability date 4th July 2005 Summary of evidence on comparative efficacy Rasagiline is an irreversible inhibitor of the monoamine oxidase-B (MAO-B) enzyme. One effect of this enzyme inhibition is an increase in extracellular dopamine levels in the striatum, with subsequently increased dopaminergic activity. This is thought to be the mechanism of action of rasagiline in Parkinson’s disease (PD). Two double-blind trials recruited 687 and 472 adults, aged >30 years, with idiopathic PD defined by the presence of two cardinal signs (resting tremor, bradykinesia or rigidity) who experienced motor fluctuations for at least 1 hour per day (excluding morning akinesia) in the first study and for at least 2.5 hours per day in the second study, with a Hoehn and Yahr score <5 in the off-state.
    [Show full text]
  • Guideline for Preoperative Medication Management
    Guideline: Preoperative Medication Management Guideline for Preoperative Medication Management Purpose of Guideline: To provide guidance to physicians, advanced practice providers (APPs), pharmacists, and nurses regarding medication management in the preoperative setting. Background: Appropriate perioperative medication management is essential to ensure positive surgical outcomes and prevent medication misadventures.1 Results from a prospective analysis of 1,025 patients admitted to a general surgical unit concluded that patients on at least one medication for a chronic disease are 2.7 times more likely to experience surgical complications compared with those not taking any medications. As the aging population requires more medication use and the availability of various nonprescription medications continues to increase, so does the risk of polypharmacy and the need for perioperative medication guidance.2 There are no well-designed trials to support evidence-based recommendations for perioperative medication management; however, general principles and best practice approaches are available. General considerations for perioperative medication management include a thorough medication history, understanding of the medication pharmacokinetics and potential for withdrawal symptoms, understanding the risks associated with the surgical procedure and the risks of medication discontinuation based on the intended indication. Clinical judgement must be exercised, especially if medication pharmacokinetics are not predictable or there are significant risks associated with inappropriate medication withdrawal (eg, tolerance) or continuation (eg, postsurgical infection).2 Clinical Assessment: Prior to instructing the patient on preoperative medication management, completion of a thorough medication history is recommended – including all information on prescription medications, over-the-counter medications, “as needed” medications, vitamins, supplements, and herbal medications. Allergies should also be verified and documented.
    [Show full text]