Hydrogeology. Digital Solute-Transport Simulation of Nitrate and Geochemistry of Fluoride in Ground Waters of Cohanche County
Total Page:16
File Type:pdf, Size:1020Kb
-HYDROGEOLOGY. DIGITAL SOLUTE-TRANSPORT SIMULATION OF NITRATE AND GEOCHEMISTRY OF FLUORIDE IN GROUND WATERS OF COHANCHE COUNTY OKLAH01'1A BY DAVID BISHPP BACK \~ Bachelor of Science College of William and Mary Williamsburg. Virginia 1980 Submitted to the Factulty ·of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for · the Degree of MASTER OF SCIENCE December. 1985 ·»r.. lct~o $ J ;L" (t] t,, '-··A HYDR OG EOLOGY, DIGITAL Sil:U LATIO N OF NITRA TE AND GEOC HEM ISTRY OF FLUORIDE I N GROU ND WA TERS OF Cat·:AN CIIE COU NTY OKLAH OUA .Thesis Approved: --------fiB~-~~~~ ---~:::e:A:~------ ------~~-~~-------- ------~~~Dean of the ~-~-------Gra duat e Colle ge ll 1236318 PREFACE The author wishes to thank Dr. Arthur W. Ho~nslow, his thesis adviser, for his valuable assistance and guidance during this and previous studies. Special appreciation is extended to Dr. Douglas c. Kent, whose knowledge of computer modeling proved invaluable. Gratitude is also extended to Dr. Wayne A. Pettyjohn who provided many of the hydrological ."concepts" needed to properly evaluate the collected data. Recognition is also extended to Benjamin B. Greeley whose joint effort in the data collection, interpretation, and computer modeling was greatly appreciated. Appreciation is further extended to Dr. Al-Shaieb whose help interpreting the geology of the study area was deeply appreciated. Gratitude is extended to the. Oklahoma Water Resources Board (OWRB) for providing pertinent data and funds for the project which was ar~anged through the Oklahoma State university and Dr. Hounslow, who was the principal investigator for this project. Special thanks is given to my father and the u.s. Geological Survey for help with data interpretation and analysis. Recognition is also extended to Lorraine Lemaster and Chi-Chung Chang for their technical ~ssistance with the solute-transport model. Further appreciation is extended to Talya Henderson and Chi-Chung iii Chang. for their help in getting the manuscript into final form. ... • < •'. /' '· iv TABLE OF CONTENTS Chapter Page I • ABSTRACT. • • • • • • • • 1 II. BACKGROUND. • Introduction • . ' . 4 Study Area • • • • • • • • • • 5 Previous lelorlt. • • • • 7 III. NITROGEN. • • • • • • • • • • • • 11 The l! it r o g en Cycle • • • • 11 Fixation and Retention • • • • • • 11 Nitrification. • • • • • • 12 Dentrification • 12 Sources of Nitrogen in Oklahoma. • 13 Pollution Potential. • • • • • 14 Nitrates in Water •• • • 15 Nitrogen in Groundwater. • • 15 Nitrate ~n Surface Water • • 17 Health Implications. • • • 18 Livestock Health • • 20 IV. GEOLOGY • • • • 22 Igneous Roclcs •• 24 Uichita Granite Group. • • 24 Quanah Granite • 24 Riebeckite-Aegirine Granite Dikes and Pegmatites 25 Post Oak Conglomerate. • 26 Sedimentology. 26 Petrology and Diagenesis 27 Depositional Envirbnments. 29 Arbuckle Group 30 v. HYDROGEOLOGY. 31 Ground Water 31 Post Oak Aquifer • 32 Lower Confining Beds 34 Arbuckle Aquifer 34 VI. ISOTOPES. 36 v Chapter Page Oxygen and Hydrogen Isotopes • • • • • 36 Carbon Isotopes. • • • • • • • • • 39 VII. SAMPLING PROCEDURES • • • • • • • • • • • • 45 VIII. GEOCHEI,HSTRY. • • • • • • • • • • • • • • • 48 Floride ••••• • • • • • • • • • • • • 49 Chemical Reactions • • • • • • • • 54 Bicarbonate •• • • • • • • • • • • • 54 Calc ium-Sodiunl Ratio • • • • • • • • • 55 Discussion •••• • • • • • • • • • • • • 55 Present Study ••• • • • • • • • • • • 60 IX. DIGITAL SOLUTE-TRANSPORT MODEL OF THE POST OAK AQUIFER • • • • • • • • • • • • • • • • • 63 Theoretical Development. • • • • • • 63 Description of the Model • • • • • • • • 68 Conceptual Model •••• • • • • • • • 69 ~atrix Design. • ••• • • • • • • 70 Hodel Boundaries •••• • • • • • • • 71 Determination of Nitrogen Input. • • • 73 Solute-Transport Calibration •• • • • • • 81 x. SIMULATIONS OF FUTURE NITROGEN MOVEMENT AND CONCENTRATION • • • • • • • • • • • • • • • 100 Recharge • • • • • • • • • • 100 Permeability • • • • • • • • • 101 Thicltness of the Unsaturated Zone. • • • • 101 Well Construction. • • • • • • • • • • 101 Application Rate and Exten of Fertilization. • • • • • 102 Water-Table Gradient • • • • • • 102 XI. SUMMARY AND CONCLUSIONS • • • • • 106 REFERENCES CITED. • • • • • • • • 110 APPENDIX. • • • • • • • • • • • • • • 116 FLOW HYDRAULICS OF HASS-TRANSPORT HODEL • 116 vi LIST OF TABLES Table Page I • Isotope Data Collected in Comanche County • • • • • • • • • • • • • • • • • • • 40 I I. Water Analyses Collected from Comanche County. • • • • • • • • • 47 III. Average Cultivated Acreage l 97 0 - 1980: Comanche County • • • • • • • • • 75 IV. Yearly Fertilizer Application: Comanche County. • • • • • • • • • • • 75 v. Calculations for Determination of Nitrogen Input to the Post Oak • • • • • 73 VI. Examples of Nitrogen Concentrations (N03 -N) ,Corrections to Reduce Errors Inherent within the Hodel. • • • ~ • • • • • • • • • • • • 92 VII. \vells in Post Oak and Alluvium • • • • 122 VIII. Locations of \-later \Jells in Alluvium and Post Oak. • • • • • • • • • 127 IX. Drillers Logs for \.Je 11 s in Alluvium and Post Oak. • • • • • • • 128 vii LIST OF FIGURES Figure Page 1. Location of Study Area • • • • • • • . .• • 6 2. Aeral Geology of Comanche County • • • • • • • • 8 3. Stratigraphic cross-section of Comanche County • • • • • • • • • • • • • • 23 4. Proposed Paleo-stream channels and Sediment phi size of Post Oak Conglomerate •••••••• • • 33 5. Areal Distribution of Deuterium in Comanche County • • • • • • • • • • • • • • 38 6 • Areal Distribution of 18o in Comanche County •••• • • • • • • • • 41 1 • Relationship of 18o to Deuterium in Comanche County .• • • • • • • • • • 42 8. Areal Distribution of 13c in Comanche County • • • • • ••• • • • • 49 9. Piper Diagram of Post Oak Waters. • • • • • • • 51 10. Distribution of fluoride in the Post Oak Formation • • • • • • •••••• • • • • • 52 11. Distribution of Fluoride in the Post Oak Waters. • . • • • • • • • • • • • • • • • • 53 12. Geochemical Transition Zone in Comanche County • • • • • • • • • • • • • • • • 56 13. Sodium-calcium Ratio Relative to Fluoride • • • 57 14. Saturation Index of Calcite • • • • • • • • • • 61 1 5 • The Relationship between Soil pH and Soil Fluoride •••••••••••••••• • • • • • 64 16. The Relationship between Fluoride Concentrations and pH. • • • • • • • • • • • • • • • • • • • 65 17. Relation of fluoride and bicarbinate in ground viii Figure Page water drawn from the Post Oak and Arbuckle Aquifers ••••••••••••••••• . 66 18. Areal Distribution of Cultivated Land • . 72 19. Relationship of Recharge to the Volume of Nitrtogen • • • • • • • • • ••••• . 80 20. Areal Distribution of N03-N Concentrations 1971-1984 • • • • • • • • • •••• . • • 84 21. N03-N (mg/1): Pumping Period 1 (concentrations calculated using entire saturated thickness • • • 85 22. N03-N (mg/1): Pumping Period 5 (concentrations calculated using entire saturated thickness • • • 86 23. N03-N (mg/1}: Pumping Period 10 (concentrations calculated using entire saturated thickness • • • 87 24. N03-N (mg/1): Pumping Period 15 (concentrations calculated using entire saturated thickness • • • 88 25. N03-N (mg/1): Pumping Period 20 (concentrations calculated using entire saturated thickness) ••• 89 26. N03-N (mg/1): Pumping Period 25 (concentrations calculated using entire saturated thickness) ••• 90 27. N03-N (mg/1): Pumping Period 30 (concentrations calculated using entire saturated thickness). 91 \ • • 28. N03-N (mg/1): Pumping Period 1 (concentrations calculated using modified saturated thickness) •• 93 29. N03-N (mg/1): Pumping Period 5 (concentrations calculated using modified saturated thickness) •• 94 30. N03-N (mg/1): Pumping Period 10 (concentrations calculated using modified saturated thickness) •• 95 31. N03-N (mg/1): Pumping Period 15 (concentrations calculated using modified saturated thickness) •• 96 32. N03-N (mg/1): Pumping Period 20 (concentrations calculated using modified saturated thickness) •• 97 33. N03-N (mg/1): Pumping Period 25 (concentrations calculated using modified saturated thickness) •• 98 34. N03-N (mg/1): Pumping Period 30 (concentrations calculated using modified saturated thickness) •• 99 ix Figure Page 35. Bottom Elevation of Post Oak. • • • 100 36. Effective Regional Ground-\Jater Recharge Rates (in inches) • • • • 119 3 7. Recharge to the Post Oak. • • • • • • • . 120 38. \~ater-Table Elevation 1 971. • • • • • • . 123 3 9. \~ater-Table Elevation 1984. • • • • 124 40. Relationship of Transmissivity to Specific Capacity. • • • • • • • • • • • • 126 41 • Coefficient of Permeability vs. Grain Size Envelope. • • • • • • • • • • • • 130 42. Permeability of Post Oak (gpd/ft 2) • • 131 43. Transmissivity (xlO 3 gpd/ft) 1984. • • • • • . 132 CHAPTER I ABSTRACT The hydrogeology and ground-water geochemistry of the Post Oak aquifer (Permian) Comanche County, Oklahoma was studied in order to evaluate the availability and chemical quality of water from this aquifer. The Post Oak aquifer, one of the major water producing units in the area, unconformably overlies ~he Arbuckle Formation and consists primarily of medium- to coarse grained quartz sand. Laterally discontinuous Permian channel deposits are interbedded with silts and clays. The Post Oak aquifer in this area attains a thickness of 2,500 feet and transmissivities range from 9;629 to 600,000 gal/day/ft. Fluoride, nitrate and dissolved solids are major water quality problems in the area. Presently, fluoride levels are high in the west-central part of the county, nnd decrease near Lawton, high Nitrates