Development of Strategies to Reduce Energy Expenditure for Lower-Limb Active Or- Thoses Author: Daniel Sanz Merodio Advisor: Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Energyenergy Isis Storedstored Energyenergy Duedue Toto Anan Objectobject Location.Location
TypesTypes ofof EnergyEnergy && EnergyEnergy TransferTransfer HeatHeat (Thermal)(Thermal) EnergyEnergy HeatHeat (Thermal)(Thermal) EnergyEnergy . HeatHeat energyenergy isis thethe transfertransfer ofof thermalthermal energy.energy. AsAs heatheat energyenergy isis addedadded toto aa substances,substances, thethe temperaturetemperature goesgoes up.up. MaterialMaterial thatthat isis burning,burning, thethe Sun,Sun, andand electricityelectricity areare sourcessources ofof heatheat energy.energy. HeatHeat (Thermal)(Thermal) EnergyEnergy Thermal Energy Explained - Study.com SolarSolar EnergyEnergy SolarSolar EnergyEnergy . SolarSolar energyenergy isis thethe energyenergy fromfrom thethe Sun,Sun, whichwhich providesprovides heatheat andand lightlight energyenergy forfor Earth.Earth. SolarSolar cellscells cancan bebe usedused toto convertconvert solarsolar energyenergy toto electricalelectrical energy.energy. GreenGreen plantsplants useuse solarsolar energyenergy duringduring photosynthesis.photosynthesis. MostMost ofof thethe energyenergy onon thethe EarthEarth camecame fromfrom thethe Sun.Sun. SolarSolar EnergyEnergy Solar Energy - Defined and Explained - Study.com ChemicalChemical (Potential)(Potential) EnergyEnergy ChemicalChemical (Potential)(Potential) EnergyEnergy . ChemicalChemical energyenergy isis energyenergy storedstored inin mattermatter inin chemicalchemical bonds.bonds. ChemicalChemical energyenergy cancan bebe released,released, forfor example,example, inin batteriesbatteries oror food.food. ChemicalChemical (Potential)(Potential) -
An Overview on Principles for Energy Efficient Robot Locomotion
REVIEW published: 11 December 2018 doi: 10.3389/frobt.2018.00129 An Overview on Principles for Energy Efficient Robot Locomotion Navvab Kashiri 1*, Andy Abate 2, Sabrina J. Abram 3, Alin Albu-Schaffer 4, Patrick J. Clary 2, Monica Daley 5, Salman Faraji 6, Raphael Furnemont 7, Manolo Garabini 8, Hartmut Geyer 9, Alena M. Grabowski 10, Jonathan Hurst 2, Jorn Malzahn 1, Glenn Mathijssen 7, David Remy 11, Wesley Roozing 1, Mohammad Shahbazi 1, Surabhi N. Simha 3, Jae-Bok Song 12, Nils Smit-Anseeuw 11, Stefano Stramigioli 13, Bram Vanderborght 7, Yevgeniy Yesilevskiy 11 and Nikos Tsagarakis 1 1 Humanoids and Human Centred Mechatronics Lab, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy, 2 Dynamic Robotics Laboratory, School of MIME, Oregon State University, Corvallis, OR, United States, 3 Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, 4 Robotics and Mechatronics Center, German Aerospace Center, Oberpfaffenhofen, Germany, 5 Structure and Motion Laboratory, Royal Veterinary College, Hertfordshire, United Kingdom, 6 Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 7 Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium, 8 Centro di Ricerca “Enrico Piaggio”, University of Pisa, Pisa, Italy, 9 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States, 10 Applied Biomechanics Lab, Department of Integrative Physiology, -
UNIVERSITY of CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION of MICROSCALE THERMOELECTRIC EFFECTS a Dissert
UNIVERSITY OF CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION OF MICROSCALE THERMOELECTRIC EFFECTS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Tela Favaloro September 2014 The Dissertation of Tela Favaloro is approved: Professor Ali Shakouri, Chair Professor Joel Kubby Professor Nobuhiko Kobayashi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Tela Favaloro 2014 This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Table of Contents List of Figures ............................................................................................................................ vi List of Tables ........................................................................................................................... xiv Nomenclature .......................................................................................................................... xv Abstract ................................................................................................................................. xviii Acknowledgements and Collaborations ................................................................................. xxi Chapter 1 Introduction .......................................................................................................... 1 1.1 Applications of thermoelectric devices for energy conversion ................................... 1 -
Benefits and Challenges of Mechanical Spring Systems for Energy Storage Applications
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 82 ( 2015 ) 805 – 810 ATI 2015 - 70th Conference of the ATI Engineering Association Benefits and challenges of mechanical spring systems for energy storage applications Federico Rossia, Beatrice Castellania*, Andrea Nicolinia aUniversity of Perugia, Department of Engineering, CIRIAF, Via G. Duranti 67, Perugia Abstract Storing the excess mechanical or electrical energy to use it at high demand time has great importance for applications at every scale because of irregularities of demand and supply. Energy storage in elastic deformations in the mechanical domain offers an alternative to the electrical, electrochemical, chemical, and thermal energy storage approaches studied in the recent years. The present paper aims at giving an overview of mechanical spring systems’ potential for energy storage applications. Part of the appeal of elastic energy storage is its ability to discharge quickly, enabling high power densities. This available amount of stored energy may be delivered not only to mechanical loads, but also to systems that convert it to drive an electrical load. Mechanical spring systems’ benefits and limits for storing macroscopic amounts of energy will be assessed and their integration with mechanical and electrical power devices will be discussed. ©© 2015 2015 The The Authors. Authors. Published Published by Elsevier by Elsevier Ltd. This Ltd. is an open access article under the CC BY-NC-ND license (Selectionhttp://creativecommons.org/licenses/by-nc-nd/4.0/ and/or peer-review under responsibility). of ATI Peer-review under responsibility of the Scientific Committee of ATI 2015 Keywords:energy storage; mechanical springs; energy storage density. 1. -
Preliminary Program
2019 Knowledge Without Borders PRELIMINARY PROGRAM Combined AACPDM 73rd Annual and IAACD 2nd Triannual Meeting SEPTEMBER 18–21, 2019 ANAHEIM, CALIFORNIA USA 2018-2019 BOARD OF DIRECTORS PRESIDENT Jilda Vargus-Adams, MD, MSc Cincinnati Children’s Hospital Medical Center Cincinnati, OH FIRST VICE PRESIDENT Mauricio Delgado, MD Texas Scottish Rite Hospital for Children Dallas, TX SECOND VICE PRESIDENT We are excited to welcome you to Anaheim for the combined 73rd American Academy Susan Sienko, PhD for Cerebral Palsy and Developmental Medicine (AACPDM) Annual and 2nd Triannual Shriners Hospitals for Children International Alliance of Academies of Childhood Disability (IAACD) Meeting. The Portland, OR theme for the meeting is “Knowledge without Borders” which is an invitation to think TREASURER outside of the box so we can come up with new problem-solving approaches through Sylvia Õunpuu, MSc collective creativity and innovation. Each year the annual meeting provides the Connecticut Children’s Medical Center Academy the opportunity to showcase its mission and to fulfill its vision; namely, to be Farmington, CT a global leader in the multidisciplinary scientific education of health professionals and TREASURER-ELECT researchers dedicated to the well-being of people with and at risk for cerebral palsy Francisco Valencia, MD and other childhood-onset disabilities. University Orthopedic Specialists The Scientific Program Committee, chaired by Dr. Veronica Schiariti and Dr. Francisco Tucson, AZ Valencia with IAACD Co-Chair Dr. Diane Damiano, put together an outstanding SECRETARY scientific program that represents the state-of-the-science in cerebral palsy and Uri Givon, MD other childhood-onset disabilities. The committee was challenged to select the 120 Safra Hospital for Children scientific papers and 283 scientific posters from near record-breaking number of Tel Hashomer, Israel quality submissions received for this year’s meeting. -
Mechanical Energy
Chapter 2 Mechanical Energy Mechanics is the branch of physics that deals with the motion of objects and the forces that affect that motion. Mechanical energy is similarly any form of energy that’s directly associated with motion or with a force. Kinetic energy is one form of mechanical energy. In this course we’ll also deal with two other types of mechanical energy: gravitational energy,associated with the force of gravity,and elastic energy, associated with the force exerted by a spring or some other object that is stretched or compressed. In this chapter I’ll introduce the formulas for all three types of mechanical energy,starting with gravitational energy. Gravitational Energy An object’s gravitational energy depends on how high it is,and also on its weight. Specifically,the gravitational energy is the product of weight times height: Gravitational energy = (weight) × (height). (2.1) For example,if you lift a brick two feet off the ground,you’ve given it twice as much gravitational energy as if you lift it only one foot,because of the greater height. On the other hand,a brick has more gravitational energy than a marble lifted to the same height,because of the brick’s greater weight. Weight,in the scientific sense of the word,is a measure of the force that gravity exerts on an object,pulling it downward. Equivalently,the weight of an object is the amount of force that you must exert to hold the object up,balancing the downward force of gravity. Weight is not the same thing as mass,which is a measure of the amount of “stuff” in an object. -
Preliminary Program
2019 Knowledge Without Borders PRELIMINARY PROGRAM Combined AACPDM 73rd Annual and IAACD 2nd Triannual Meeting SEPTEMBER 18–21, 2019 ANAHEIM, CALIFORNIA USA 2018-2019 BOARD OF DIRECTORS PRESIDENT Jilda Vargus-Adams, MD, MSc Cincinnati Children’s Hospital Medical Center Cincinnati, OH FIRST VICE PRESIDENT Mauricio Delgado, MD Texas Scottish Rite Hospital for Children Dallas, TX SECOND VICE PRESIDENT We are excited to welcome you to Anaheim for the combined 73rd American Academy Susan Sienko, PhD for Cerebral Palsy and Developmental Medicine (AACPDM) Annual and 2nd Triannual Shriners Hospitals for Children International Alliance of Academies of Childhood Disability (IAACD) Meeting. The Portland, OR theme for the meeting is “Knowledge without Borders” which is an invitation to think TREASURER outside of the box so we can come up with new problem-solving approaches through Sylvia Õunpuu, MSc collective creativity and innovation. Each year the annual meeting provides the Connecticut Children’s Medical Center Academy the opportunity to showcase its mission and to fulfill its vision; namely, to be Farmington, CT a global leader in the multidisciplinary scientific education of health professionals and TREASURER-ELECT researchers dedicated to the well-being of people with and at risk for cerebral palsy Francisco Valencia, MD and other childhood-onset disabilities. University Orthopedic Specialists The Scientific Program Committee, chaired by Dr. Veronica Schiariti and Dr. Francisco Tucson, AZ Valencia with IAACD Co-Chair Dr. Diane Damiano, put together an outstanding SECRETARY scientific program that represents the state-of-the-science in cerebral palsy and Uri Givon, MD other childhood-onset disabilities. The committee was challenged to select the 120 Safra Hospital for Children scientific papers and 283 scientific posters from near record-breaking number of Tel Hashomer, Israel quality submissions received for this year’s meeting. -
Energy Dissipation Mechanism and Damage Model of Marble Failure Under Two Stress Paths
L. Zhang et alii, Frattura ed Integrità Strutturale, 30 (2014) 515-525; DOI: 10.3221/IGF-ESIS.30.62 Energy dissipation mechanism and damage model of marble failure under two stress paths Liming Zhang College of Science, Qingdao Technological University, Qingdao, Shandong 266033, China; [email protected] Co-operative Innovation Center of Engineering Construction and Safety in Shandong Peninsula blue economic zone, Qingdao Technological University ; Qingdao, Shandong 266033, China; [email protected] Mingyuan Ren, Shaoqiong Ma, Zaiquan Wang College of Science, Qingdao Technological University, Qingdao, Shandong 266033, China; Email: [email protected], [email protected], [email protected] ABSTRACT. Marble conventional triaxial loading and unloading failure testing research is carried out to analyze the elastic strain energy and dissipated strain energy evolutionary characteristics of the marble deformation process. The study results show that the change rates of dissipated strain energy are essentially the same in compaction and elastic stages, while the change rate of dissipated strain energy in the plastic segment shows a linear increase, so that the maximum sharp point of the change rate of dissipated strain energy is the failure point. The change rate of dissipated strain energy will increase during unloading confining pressure, and a small sharp point of change rate of dissipated strain energy also appears at the unloading point. The damage variable is defined to analyze the change law of failure variable over strain. In the loading test, the damage variable growth rate is first rapid then slow as a gradual process, while in the unloading test, a sudden increase appears in the damage variable before reaching the rock peak strength. -
Dissipation Potentials from Elastic Collapse
Dissipation potentials from royalsocietypublishing.org/journal/rspa elastic collapse Joe Goddard1 and Ken Kamrin2 1Department of Mechanical and Aerospace Engineering, University Research of California, San Diego, CA, USA 2 Cite this article: Goddard J, Kamrin K. 2019 Department of Mechanical Engineering, Massachusetts Institute of Dissipation potentials from elastic collapse. Technology, Cambridge, MA, USA Proc.R.Soc.A475: 20190144. JG, 0000-0003-4181-4994 http://dx.doi.org/10.1098/rspa.2019.0144 Generalizing Maxwell’s (Maxwell 1867 IV. Phil. Trans. Received: 7 March 2019 R. Soc. Lond. 157, 49–88 (doi:10.1098/rstl.1867.0004)) classical formula, this paper shows how the Accepted: 9 May 2019 dissipation potentials for a dissipative system can be derived from the elastic potential of an elastic system Subject Areas: undergoing continual failure and recovery. Hence, stored elastic energy gives way to dissipated elastic mechanics energy. This continuum-level response is attributed broadly to dissipative microscopic transitions over Keywords: a multi-well potential energy landscape of a type dissipative systems, nonlinear Onsager studied in several previous works, dating from symmetry, elastic failure, energy landscape Prandtl’s (Prandtl 1928 Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM 8, Author for correspondence: 85–106) model of plasticity. Such transitions are assumed to take place on a characteristic time scale Joe Goddard T, with a nonlinear viscous response that becomes a e-mail: [email protected] plastic response for T → 0. We consider both discrete mechanical systems and their continuum mechanical analogues, showing how the Reiner–Rivlin fluid arises from nonlinear isotropic elasticity. A brief discussion is given in the conclusions of the possible extensions to other dissipative processes. -
Proceedings of the 3Rd International Mobile Brain/Body Imaging Conference Berlin, July 12Th to July 14Th 2018
Proceedings of the 3rd International Mobile Brain/Body Imaging Conference Berlin, July 12th to July 14th 2018 Edited by Prof. Dr. Klaus Gramann Technische Universität Berlin Department of Psychology and Ergonomics Chair Biological Psychology and Neuroergonomics This work is licensed under a Creative Commons License. License: Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ Published on the repository of TU Berlin DepositOnce DOI 10.14279/depositonce-7236 https://doi.org/10.14279/depositonce-7236 Conference Proceedings of the 3rd International Mobile Brain/Body Imaging Conference Berlin, July 12th to July 14th 2018 The 3rd International Mobile Brain/Body Imaging Conference was supported by: The German Research Foundation DFG (Grant GR2627/10-1) The National Science Foundation NSF (Grant NSF CBET-1757760) The Office of Naval Research Global ONRG (Grant N62909-16-1-2065) 2 Conference Proceedings of the 3rd International Mobile Brain/Body Imaging Conference Berlin, July 12th to July 14th 2018 Table of Contents Keynotes ...................................................................................................................... 11 MoBI for investigating disordered motor control in children with cerebral palsy ............ 11 Diane Damiano ............................................................................................................. 11 Exercise your Brain and Mind ....................................................................................... 11 Art Kramer .................................................................................................................... -
The Relationship Between Energy Demand and Real GDP Growth Rate: the Role of Price Asymmetries and Spatial Externalities Within 34 Countries Across the Globe
The relationship between energy demand and real GDP growth rate: the role of price asymmetries and spatial externalities within 34 countries across the globe Panagiotis Fotis a Hellenic Competition Commission Commissioner Sotiris Karkalakos b University of Piraeus and DePaul University Department of Economics Dimitrios Asteriou c Oxford Brookes University Department of Accounting, Finance and Economics Abstract The aim of this paper is to empirically explore the relationship between energy demand and real Gross Domestic Product (GDP) growth and to investigate the role of asymmetries (price and GDP growth asymmetries) and regional externalities on Final Energy Consumption (FEC ) in 34 countries during the period from 2005 to 2013. The paper utilizes a Panel Generalized Method of Moments approach in order to analyse the effect of real GDP growth rate on FEC through an Error Correction Model (ECM) and spatial econometric techniques in order to examine clustered patterns of energy consumption. The results show that a) the demand is elastic both in the industrial and the household/services sectors, b) electricity and natural gas are demand substitutes, c) the relationship between real GDP growth rate and energy consumption exhibits an inverted U – shape, d) price (electricity and gas) and GDP growth asymmetries are supported from the employed parametric and non – parametric tests, and e) distance does not affect FEC, but economic neighbors have a strong positive effect. Keywords: energy demand; dynamic panel data; error correction model; spatial externalities. JEL classification C21; C23; C51; L16; R12 a Corresponding Author , Hellenic Competition Commission, Commissionner, 5 P. Ioakim St., 12132, Peristeri, Greece, Tel.: +30 6947609741, E-mail: [email protected] . -
Energy Regenerative Damping in Variable Impedance Actuators for Long-Term Robotic Deployment
XXXX, VOL. X, NO. X, JANUARY 2020 1 Energy regenerative damping in variable impedance actuators for long-term robotic deployment Fan Wu and Matthew Howard∗† Abstract—Energy efficiency is a crucial issue towards long- Recently, much research effort has gone into the design term deployment of compliant robots in the real world. In of variable physical damping actuation, based on different the context of variable impedance actuators (VIAs), one of the principles of damping force generation (see [4], [5] for a main focuses has been on improving energy efficiency through reduction of energy consumption. However, the harvesting of review). Variable physical damping has proven to be necessary dissipated energy in such systems remains under-explored. This to achieve better task performance, for example, in eliminat- study proposes a variable damping module design enabling ing undesired oscillations caused by the elastic elements of energy regeneration in VIAs by exploiting the regenerative VSAs [6], [7]. It has also been demonstrated that variable braking effect of DC motors. The proposed damping module physical damping plays an important role in terms of energy uses four switches to combine regenerative and dynamic braking, in a hybrid approach that enables energy regeneration without efficiency for actuators that are required to operate at different a reduction in the range of damping achievable. A physical frequencies, to optimally exploit the natural dynamics [6]. implementation on a simple VIA mechanism is presented in However, while these studies represent important advances which the regenerative properties of the proposed module are in terms of improving the efficiency of energy consumption characterised and compared against theoretical predictions.