The Development and Role of Peripheral Auditory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
FAMILY Loricariidae Rafinesque, 1815
FAMILY Loricariidae Rafinesque, 1815 - suckermouth armored catfishes SUBFAMILY Lithogeninae Gosline, 1947 - suckermoth armored catfishes GENUS Lithogenes Eigenmann, 1909 - suckermouth armored catfishes Species Lithogenes valencia Provenzano et al., 2003 - Valencia suckermouth armored catfish Species Lithogenes villosus Eigenmann, 1909 - Potaro suckermouth armored catfish Species Lithogenes wahari Schaefer & Provenzano, 2008 - Cuao suckermouth armored catfish SUBFAMILY Delturinae Armbruster et al., 2006 - armored catfishes GENUS Delturus Eigenmann & Eigenmann, 1889 - armored catfishes [=Carinotus] Species Delturus angulicauda (Steindachner, 1877) - Mucuri armored catfish Species Delturus brevis Reis & Pereira, in Reis et al., 2006 - Aracuai armored catfish Species Delturus carinotus (La Monte, 1933) - Doce armored catfish Species Delturus parahybae Eigenmann & Eigenmann, 1889 - Parahyba armored catfish GENUS Hemipsilichthys Eigenmann & Eigenmann, 1889 - wide-mouthed catfishes [=Upsilodus, Xenomystus] Species Hemipsilichthys gobio (Lütken, 1874) - Parahyba wide-mouthed catfish [=victori] Species Hemipsilichthys nimius Pereira, 2003 - Pereque-Acu wide-mouthed catfish Species Hemipsilichthys papillatus Pereira et al., 2000 - Paraiba wide-mouthed catfish SUBFAMILY Rhinelepinae Armbruster, 2004 - suckermouth catfishes GENUS Pogonopoma Regan, 1904 - suckermouth armored catfishes, sucker catfishes [=Pogonopomoides] Species Pogonopoma obscurum Quevedo & Reis, 2002 - Canoas sucker catfish Species Pogonopoma parahybae (Steindachner, 1877) - Parahyba -
The Pandas Are Coming, the Pandas Are Coming!!! by DRAS Member Derek P.S
WTFish?: The Pandas Are Coming, The Pandas Are Coming!!! by DRAS Member Derek P.S. Tustin ometimes it is interesting living in the Greater Toronto Area, isn’t it? S Recently deemed to be the fourth largest city in North America (leaping past Chicago by 84,000 people) behind Mexico City, New York and Los Angeles, we truly are a world class city. (Interestingly enough, the Greater Toronto Area, that being the recognized metropolitan area of the city and those living in the immediate suburbs, is actually the 51st largest metropolitan area in the world with 6,139,000 people. Tokyo is first with 37,126,000 and Chicago is 28th, with 9,121,000(1). So we still have some catching up to do...) And since I seem to be heading off on tangents today, have you ever considered what makes a city “world class”? According to some, it is a “city generally considered to be an important node in the global economic system.”(2) Given Toronto’s impact on the national economy, and the subsequent influence within the international economic community, it can easily be argued that Toronto is such a city. But there are also cultural factors that come into play. Toronto is blessed with many such attractions, but the one that stands out in my mind is the Toronto Zoo. Sometimes I think we all take for granted what a wonderful facility we have right next door. The Toronto Zoo is consistently ranked as one of the top ten zoos in the world (3, 4, 5), and acknowledged as being one of the largest zoos in the world (6). -
Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E
Circular 54 Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E. Hill and Roy P.E. Yanong2 Introduction Unlike many traditional agriculture industries in Florida which may raise one or only a few different species, tropical Freshwater tropical ornamental fish culture is the largest fish farmers collectively culture hundreds of different component of aquaculture in the State of Florida and ac- species and varieties of fishes from numerous families and counts for approximately 95% of all ornamentals produced several geographic regions. There is much variation within in the US. There are about 200 Florida producers who and among fish groups with regard to acceptable water collectively raise over 800 varieties of freshwater fishes. In quality parameters, feeding and nutrition, and mode of 2003 alone, farm-gate value of Florida-raised tropical fish reproduction. Some farms specialize in one or a few fish was about US$47.2 million. Given the additional economic groups, while other farms produce a wide spectrum of effects of tropical fish trade such as support industries, aquatic livestock. wholesalers, retail pet stores, and aquarium product manufacturing, the importance to Florida is tremendous. Fish can be grouped in a number of different ways. One major division in the industry which has practical signifi- Florida’s tropical ornamental aquaculture industry is cance is that between egg-laying species and live-bearing concentrated in Hillsborough, Polk, and Miami-Dade species. The culture practices for each division are different, counties with additional farms throughout the southern requiring specialized knowledge and equipment to succeed. half of the state. Historic factors, warm climate, the proxim- ity to airports and other infrastructural considerations This publication briefly reviews the more common groups (ready access to aquaculture equipment, supplies, feed, etc.) of freshwater tropical ornamental fishes cultured in Florida are the major reasons for this distribution. -
Origin, Evolution and Homologies of the Weberian Apparatus: a New Insight
Int. J. Morphol., 27(2):333-354, 2009. Origin, Evolution and Homologies of the Weberian Apparatus: A New Insight Origen, Evolución y Homologías del Aparato Weberiano: Un Nuevo Acercamiento Rui Diogo DIOGO, R. Origin, evolution and homologies of the Weberian apparatus: a new insight. Int. J. Morphol., 27(2):333-354, 2009. SUMMARY: The Weberian apparatus is essentially a mechanical device improving audition, consisting of a double chain of ossicles joining the air bladder to the inner ear. Despite being one of the most notable complex systems of teleost fishes and the subject of several comparative, developmental and functional studies, there is still much controversy concerning the origin, evolution and homologies of the structures forming this apparatus. In this paper I provide a new insight on these topics, which takes into account the results of recent works on comparative anatomy, paleontology, and ontogeny as well as of a recent extensive phylogenetic analysis including not only numerous otophysan and non-otophysan extant otocephalans but also ostariophysan fossils such as †Chanoides macropoma, †Clupavus maroccanus, †Santanichthys diasii, †Lusitanichthys characiformis, †Sorbininardus apuliensis and †Tischlingerichthys viohli. According to the evidence now available, the Weberian apparatus of otophysans seems to be the outcome of a functional integration of features acquired in basal otocephalans and in basal ostariophysans, which were very likely not directly related with the functioning of this apparatus, and of features acquired in the nodes leading to the Otophysi and to the clade including the four extant otophysan orders, which could well have been the result of a selection directly related to the functioning of the apparatus. -
A New Black Baryancistrus with Blue Sheen from the Upper Orinoco (Siluriformes: Loricariidae)
Copeia 2009, No. 1, 50–56 A New Black Baryancistrus with Blue Sheen from the Upper Orinoco (Siluriformes: Loricariidae) Nathan K. Lujan1, Mariangeles Arce2, and Jonathan W. Armbruster1 Baryancistrus beggini, new species, is described from the upper Rı´o Orinoco and lower portions of its tributaries, the Rı´o Guaviare in Colombia and Rı´o Ventuari in Venezuela. Baryancistrus beggini is unique within Hypostominae in having a uniformly dark black to brown base color with a blue sheen in life, and the first three to five plates of the midventral series strongly bent, forming a distinctive keel above the pectoral fins along each side of the body. It is further distinguished by having a naked abdomen, two to three symmetrical and ordered predorsal plate rows including the nuchal plate, and the last dorsal-fin ray adnate with adipose fin via a posterior membrane that extends beyond the preadipose plate up to half the length of the adipose-fin spine. Se describe una nueva especie, Baryancistrus beggini, del alto Rı´o Orinoco y las partes bajas de sus afluentes: el rı´o Guaviare en Colombia, y el rı´o Ventuari en Venezuela. Baryancistrus beggini es la u´ nica especie entre los Hypostominae que presenta fondo negro oscuro a marro´ n sin marcas, con brillo azuloso en ejemplares vivos. Las primeras tres a cinco placas de la serie medioventral esta´n fuertemente dobladas, formando una quilla notable por encima de las aletas pectorales en cada lado del cuerpo. Baryancistrus beggini se distingue tambie´n por tener el abdomen desnudo, dos o tres hileras de placas predorsales sime´tricas y ordenadas (incluyendo la placa nucal) y el u´ ltimo radio de la aleta dorsal adherido a la adiposa a trave´s de una membrana que se extiende posteriormente, sobrepasando la placa preadiposa y llegando hasta la mitad de la espina adiposa. -
Three New South American Mailed Catfishes of the Genera Rineloricaria and Loricariichthys (Pisces, Siluriformes, Loricariide)
Three new South American mailed catfishes of the genera Rineloricaria and Loricariichthys (Pisces,Siluriformes, Loricariide) by I.J.H. Isbrücker & H. Nijssen Institute of Taxonomic Zoology, University of Amsterdam, The Netherlands Abstract MACN Museo Argentino de Ciencias Naturales "Ber- nardino Rivadavia", Buenos Aires. Three new species belonging to two different genera of South MCZ Museum of Comparative Zoology, Cambridge, American mailed catfishes of the subfamily Loricariinae are Mass. described and figured. A discussion of and comparative notes MNHN Museum National d'Histoire Naturelle, Paris. on related species are added. MZUSP Museu de da Universidade de Sao Rineloricaria described from the Río Zoologia formosa n. sp. is Paulo, Sao Paulo. Inírida/Río Orinoco drainage in Colombia, from the Río NIU Northern Illinois University, DeKalb, 111. (spec- Atabapo (Río Orinoco drainage) in Venezuela, and from the imens in FMNH). Rio Tiquié and Rio Uaupés (Rio Amazonas drainage) in NMW Naturhistorisches Museum, Vienna. Brazil. It is compared with Rineloricaria morrowi Fowler, NRS Naturhistoriska Riksmuseet, Stockholm. 1940, with Rineloricaria melini (Schindler, 1959), and with RMNH Rijksmuseum van Natuurlijke Historie, Leiden. Rineloricaria fallax (Steindachner, 1915). The lectotype of USNM National Museum of Natural the History, formerly the latter species is herein designated, and a discussion on United States National Museum, Washington misidentification of R. fallax with Loricariichthys brunneus D.C. (Hancock, 1828) is added. ZFMK Zoologisches Forschungsinstitut und Museum Rineloricaria hasemani is based three n. sp. on specimens, "Alexander Bonn. of of Rineloricaria from Koenig", two which are paralectotypes fallax ZMA Instituut voor Taxonomische Zoologie (Zoolo- Maguarý. The specimens were collected from streams around gisch Museum), Amsterdam. -
John Todaro Angelfish
T H E O N - L I N E J O U R N A L O F T H E B R O O K L Y N A Q U A R I U M S O C I E T Y QVOL. 32 UATI MAY - JUNE 2019 No. 5 CA AngelfishA - Pteropyllum scalare Photo: John Todaro 1 108 Y EARSOF E DUCATING A QUARISTS AQUATICA VOL. 32 MAY • JUNE 2 0 1 9 N O . 5 C ONTENTS PAGE 2 THE AQUATICA STAFF PAGE 29 THE SCARLET BADIS. A report on Dario dario a beautiful PAGE 3 CALENDAR OF EVENTS. small fish and how to breed them. BAS Events for the year 2019. MIKE HELLWEG - MAS PAGE 4 MAKING YOUR OWN FISH PAGE 32 WHY SOUTHEAST ASIA FOOD. How to make your own AND AUSTRALIA’S CORAL homemade fish foods. REEFS BECOME SO RICH IN STAFF WRITER - www.pethelpful.com SPECIES. Dive into the coral reefs of Southeast Asia or Australia and you’ll likely PAGE 6 AN OLD FAVORITE REVISITED: spot a wrasse. But which of the hundreds of THE PARADISE FISH. The Paradise fish kinds of wrasses will you see? is the granddaddy of all tropical fish. STEPH YIN - New York Times 10/17/2018 JOHN TODARO - BAS PAGE 34 WHERE DID FISH FIRST EVOLVE? THE PAGE 7 ORGANIC DISEASE TREATMENTS. ANSWER MAY BE SHALLOW. Some had armor Supplemental measures to help your fish fight off and spikes. Many lacked jaws. They evolved in the diseases and recover from them. shallow coasts around super continents and they ANTHONY P. -
"The "Comb-Toothed" Loricariinae of Surinam, with Reflections on the Phylogenetic Tendencies Within
THE "COMB-TOOTHED" LORICARIINAE OF SURINAM, WITH REFLECTIONS ON THE PHYLOGENETIC TENDENCIES WITHIN THE FAMILY LORICARIIDAE (SILURIFORMES, SILUROIDEI) by M. BOESEMAN Rijksmuseum van Natuurlijke Historie, Leiden With 5 text-figures, 8 plates, 11 tables and 26 diagrams CONTENTS Introduction 3 The nominal genera and their evaluation 4 The phylogeny of the higher Loricariidae 12 Measurements and methods 18 Collecting localities 19 Miscellaneous remarks 23 The Surinam species 23 Distribution and habitat 23 Key to the Surinam species 25 Descriptions of the Surinam species 25 Acknowledgements 44 Summary 44 Diagrams 44 References 55 INTRODUCTION The present paper is the third in a series intended to present a review of the Surinam representatives of the Loricariid armoured catfishes (Lori- cariidae), of which the previous two dealt with the Surinam species be- longing to the genus Hypostomus Lacépède (Boeseman, 1968, 1969). Like these, the review now presented is mainly based on the extensive material assembled during the period 1963 to 1967 by the zoologists carrying out the Biological Brokopondo Research Project, sponsored by the Netherlands Foundation for the Advancement of Research in Surinam and the Nether- lands Antilles (WOSUNA), the Netherlands Foundation for the Advan- cement of Tropical Research (WOTRO), the Rijksmuseum van Natuur- lijke Historie at Leiden, and the Zoölogisch Museum at Amsterdam. Besides these specimens, now included in the collections of the Museums at Am- sterdam (ZMA) and Leiden (RMNH), additional material was provided by 4 ZOOLOGISCHE VERHANDELINGEN 116 (1971) the British Museum (Natural History) (BM), the Chicago Museum of Natural History (FMNH), and the Museum National d'Histoire Naturelle (MNHN). -
Corydoras Tukano, a New Species of Corydoradine Catfish from the Rio Tiquié, Upper Rio Negro Basin, Brazil (Ostariophysi: Siluriformes: Callichthyidae)
Neotropical Ichthyology, 1(2):83-91, 2003 Copyright © 2003 Sociedade Brasileira de Ictiologia Corydoras tukano, a new species of corydoradine catfish from the rio Tiquié, upper rio Negro basin, Brazil (Ostariophysi: Siluriformes: Callichthyidae) Marcelo R. Britto* and Flávio C.T. Lima** A new Corydoras species from the rio Tiquié, upper rio Negro system, Amazonas, Brazil, is described. This taxon was previously referred to as “Corydoras species ‘Asher’”, “Corydoras cf. reynoldsi”, and “Corydoras aff. reynoldsi” in the aquarist literature. The new taxon can be distinguished from all its congeners, except Corydoras reynoldsi and C. weitzmani, by its color pattern, consisting of three large, dark blotches, the first one (“mask”) on the head, across the eye; the second one on the trunk at the level of dorsal fin; and the third one on the trunk at the level of the adipose fin. It can be distinguished from Corydoras reynoldsi mainly by the development of trunk blotches; and from C. weitzmani by the presence of a dusky saddle between the dorsal and adipose fins, the second trunk blotch extending vertically from the adipose-fin base to the anal-fin base, and the presence of four dark stripes in the caudal fin. Uma nova espécie de Corydoras do rio Tiquié, bacia do alto rio Negro, estado do Amazonas, Brasil, é descrita. Este táxon foi anteriormente citado na literatura aquarista como “Corydoras species ‘Asher’”, “Corydoras cf. reynoldsi” e “Corydoras aff. reynoldsi”. O novo táxon pode ser distinguido de todos seus congêneres, exceto Corydoras reynoldsi e C. weitzmani, por seu padrão de colorido, que consiste em três grandes manchas pretas, a primeira (“máscara”) na cabeça, através do olho; a segunda no tronco, no nível da nadadeira dorsal; e a terceira no tronco, no nível da nadadeira adiposa. -
Electric Eel Electrophorus Electricus
Electric Eel Electrophorus electricus Gen. Habitat Water Habitat Rivers Temperature 0-35 C Humidity Undefined Pressure High Salinity 1000-3000 ppm pH 6.0-8.0 Summary: The electric eel is a species of fish found in the basins of the Amazon and Orinoco Rivers of South America. It can produce an electric discharge on the order of 600-650 volts, which it uses for both hunting and self-defense. It is an apex predator in its South American range. Despite its name it is not an eel at all but rather a knifefish. Description: A typical electric eel has an elongated square body, a flattened head, and an overall dark grayish green color shifting to yellowish on the bottom. They have almost no scales. The mouth is square, placed right at the end of the snout. The anal fin continues down the length of the body to the tip of their tail. It can grow up to 2.5 m (about 8.2 feet) in length and 20 kg (about 44 pounds) in weight, making them the largest Gymnotiform. 1 m specimens are more common. They have a vascularized respiratory organ in their oral cavity. These fish are obligate air-breathers; rising to the surface every 10 minutes or so, the animal will gulp air before returning to the bottom. Nearly 80% of the oxygen used by the fish is taken in this way. Despite its name, the electric eel is not related to eels but is more closely related to catfish. Scientists have been able to determine through experimental information that E.