Anne Arundel County

Total Page:16

File Type:pdf, Size:1020Kb

Anne Arundel County 1 Anne I .\RUNDE1 County ilBII pi I • 'lill Mllvlli 'il I I I 1 ;■ ' 11 {[[•^1 I Dept. 6eo«ogy. 8B< Wj,w Johns Hopkins Univewity Baltimore, Maryland MARYLAND GEOLOGICAL SURVEY ANNE ARUNDEL COUNTY MARYLAND GEOLOGICAL SURVEY ANNE ARUNDEL COUNTY BALTIMORE THE JOHNS HOPKINS PRESS 1917 COMMISSION EMEESON C. HARRINGTON, .... Peesident. GOVERNOR OF MARYLAND JOHN M. DENNIS, COMPTROLLER OF MARYLAND FRANK J. GOODNOW, .... Executive Officer. PRESIDENT OF THE JOHNS HOPKINS UNIVERSITY H. J. PATTERSON, Secretary. PRESIDENT OF THE MARYLAND AGRICULTURAL COLLEGE ■ SCIENTIFIC STAFF Wm. Bullock Clark, State Geologist. SUPERINTENDENT OF THE SURVEY. Edward B. Matiiews, . Assistant State Geologist. C. K. Swartz, Geologist. E. W. Berry, Geologist. J. T. Singewald, Jr., Geologist. Also with the cooperation of several members of the scientific bureaus of the National Government. LETTER OF TRANSM1TTAL To His Excellency Emerson C. Harrington, Governor of Maryland and President of the Geological Survey Commission. Sir:—I have the honor to present herewith a report on The Physical Features of Anne Arundel County. This volume is the eighth of a series of reports on the county resources, and is accompanied by large scale topographical, geological, and agricultural soil maps. The information contained in this volume will prove of both economic and educational value to the residents of Anne Arundel County as well as to those who may desire information regarding this section of the State. I am, Very respectfully, Wm. Bullock Clark, State Geologist. Johns Hopkins University, Baltimore. March, 1916. ■ ■ CONTENTS page PREFACE 19 DEVELOPMENT OF KNOWLEDGE CONCERNING THE PHYSICAL FEATURES OF ANNE ARUNDEL COUNTY. By Homer P. Little 23 Introductory 23 HISTORICAL REVIEW 23 General Contributions 23 The Lower Cretaceous 26 The Upper Cretaceous 29 The Eocene 30 The Miocene 31 The Pliocene (?) and Pleistocene 32 Bibliography 34 THE PHYSIOGRAPHY OF ANNE ARUNDEL COUNTY. By HOMER P. Little 47 Introductory 47 Topographic Description 48 topographic features 48 Tide Marshes 48 The Talbot Plain 48 The Wicomico Plain ■ 49 The Sunderland Plain 49 The Brandywine Plain 50 THE DRAINAGE OF ANNE ARUNDEL COUNTY 51 Stream Divides 51 Tidewater Estuaries 52 The Patuxent River 53 The Patapsco River 53 TOPOGRAPHIC HISTORY' 53 Introductory 53 The Brandywine Stage 54 The Sunderland Stage 54 The Wicomico Stage 55 The Talbot Stage 56 The Recent Stage 56 THE GEOLOGY OF ANNE ARUNDEL COUNTY. By Homer P. Little. .. 57 Introductory 57 The Cretaceous Period 59 THE POTOMAC GROUP 59 The Patuxent Formation 59 Areal Distribution 59 Character of Materials 60 Paleontologlc Character 60 Strike, Dip, and Thickness 61 Stratigraphic Relations 61 13 CONTENTS PAGE The Arundel Formation 61 Areal Distribution 61 Character of Materials 62 Paieontoiogic Character 63 Strike, Dip, and Thickness 64 Stratigraphic Relations 64 The Patapsco Formation 64 Areal Distribution 64 Character of Materials 65 Paieontoiogic Character 66 Strike, Dip, and Thickness 67 Stratigraphic Relations 67 THE UPPER CBETACEOUS FORMATIONS 67 The Raritan Formation 67 Areal Distribution 68 Character of Materials 68 Paieontoiogic Character 70 Strike, Dip, and Thickness 71 Stratigraphic Relations 71 The Magothy Formation 71 Areal Distribution 72 Character of Materials 72 Paieontoiogic Character 74 Strike, Dip, and Thickness 75 Stratigraphic Relations 76 The Matawan Formation 76 Areal Distribution 76 Character of Materials 77 Paieontoiogic Character 79 Strike, Dip, and Thickness 79 Stratigraphic Relations 79 The Monmouth Formation 80 Areal Distribution 80 Character of Materials 80 Paieontoiogic Character 81 Strike, Dip, and Thickness 81 Stratigraphic Relations 82 The Eocene Formations 82 THE PAMUNKEY GROUP 82 The Aquia Formation 82 Areal Distribution 82 Character of Materials 83 Paieontoiogic Character 84 Strike, Dip, and Thickness 85 Stratigraphic Relations 85 Subdivisions 87 CONTENTS 13 page The Nanjemoy Formation 88 Areal Distribution 88 Character of Materials 88 Paleontologic Character 89 Strike, Dip, and Thickness 89 Stratigraphic Relations 89 Subdivisions 90 ■ The Miocene Formations 90 THE CHESAPEAKE GBOUP 90 The Calvert Formation 90 Areal Distribution 91 Character of Materials 91 Paleontologic Character 93 Strike, Dip, and Thickness 93 Stratigraphic Relations 94 Subdivisions 94 The Choptank Formation 94 The St. Mary's Formation 95 The Pliocene (?) Formations 95 The Brandywine Formation 95 Areal Distribution 96 Character of Materials 96 Physiographic Expression 97 Paleontologic Character 98 Thickness 98 Stratigraphic Relations 98 The Pleistocene Formations 98 THE COLUMBIA GBOUP 98 The Sunderland Formation 99 Areal Distribution 99 Character of Materials 99 Physiographic Expression 100 Paleontologic Character 101 Thickness 101 Stratigraphic Relations 101 The Wicomico Formation 101 ■ Areal Distribution 101 Character of Materials 102 Physiographic Expression 102 Paleontologic Character 103 Thickness 103 Stratigraphic Relations 103 2 14 CONTENTS PAGE The Talbot Formation 103 Areal Distribution 103 Character of Materials 104 Physiographic Expression 106 Paleontologic Character 106 Thickness 107 Stratigraphic Relations 107 The Recent Deposits 107 Interpretation of the Geological Record 109 SEDIMENTARY RECORD OF THE POTOMAC GROUP 109 SEDIMENTARY RECORD OF THE UPPER CRETACEOUS FORMATIONS Ill SEDIMENTARY RECORD OF THE EOCENE FORMATIONS 114 SEDIMENTARY RECORD OF THE MIOCENE FORMATIONS 115 SEDIMENTARY RECORD OF THE BRANDYWINE FORMATION 115 SEDIMENTARY RECORD OF THE PLEISTOCENE FORMATIONS 116 THE MINERAL RESOURCES OP ANNE ARUNDEL COUNTY. By Somer P. Little 119 Introductory 119 The Natural Deposits 119 the clays 119 The Potomac Clays 119 The Upper Cretaceous Clays 121 The Eocene and Miocene Clays 121 The Brandywine and Pleistocene Clays 122 the sands 122 the gravels 124 THE BUILDING STONES 125 THE MARLS . 125 THE DIATOMACEOUS EARTH 126 THE IRON ORES 126 THE PETROLEUM AND NATURAL GAS 127 THE LIGNITE AND PYRITE 128 The Water Resources of Anne Arundel County 128 springs 128 SHALLOW WELLS 129 ARTESIAN WELLS 130 Waters of the Potomac Group 130 Waters of the Upper Cretaceous 131 Waters 0} the Eocene 132 Waters of the Miocene 132 THE SOILS OF ANNE ARUNDEL COUNTY. BY J. C. BRITTON AND C. R. Zappone, Jr 133 Introductory 133 The Soil Types 136 THE COLLINGTON SANDY LOAM 137 THE COLLINGTON SAND 139 CONTENTS 15 PAGE THE SASSAFRAS SILT LOAM 140 Sassafras Silt Loam (poorly drained phase) 142 THE SASSAFBAS FINE SANDY LOAM 143 THE SASSAFBAS FINE SAND 146 THE SASSAFRAS LOAM 147 THE SUSQUEHANNA SANDY LOAM 148 THE NORFOLK SAND 150 THE SASSAFBAS SAND 151 THE SASSAFRAS LOAMY SAND 153 THE SUSQUEHANNA GRAVELLY LOAM 154 THE SUSQUEHANNA SAND 155 THE SUSQUEHANNA CLAY LOAM 156 THE ELKTON SILT LOAM 156 THE SASSAFBAS SANDY LOAM 158 THE SASSAFBAS GRAVELLY LOAM 158 THE COLLINGTON GRAVELLY SANDY LOAM 159 THE MEADOW 160 THE TIDAL MARSH 160 The Agricttltukal Conditions 161 THE CLIMATE OF ANNE AR1TNDEL COUNTY. BY O. L. FassiG 175 Introductory 175 The Tempebatube 176 The Pebiod of Safe Plant Growth 177 The Pbecipitation ' 180 fbequency of stated amounts of pbecipitation 181 DRY SPELLS 181 A Remarkable Rainfall • • • 183 A Phenomenal Fall of Hail 183 THE HYDROGRAPHY OF ANNE ARUNDEL COUNTY. BY B. D. Wood. 193 Introductory 193 Gazetteer of Streams li^ THE MAGNETIC DECLINATION IN ANNE ARUNDEL COUNTY. By L. A. Bauer 201 Introductory 201 Meridian Line 202 Description of Stations 202 Changes in the Magnetic Declination 203 THE FORESTS OF ANNE ARUNDEL COUNTY. BY F. W. Besley 205 Introductory 205 The Distribution of the Forests 206 The Description of the Forests 207 The Stand of the Timber and its Value 209 The Commercial Types 209 The Forest Tbees 210 16 CONTENTS PAGE The Important Timber Trees and Their Uses 212 the oaks 212 OTHER HARDWOODS 213 The Lumber and Timber Cut 215 The Transportation Facilities and Markets 217 The Forest Industries 219 Destructive Agencies 221 FOREST FIBES 221 PASTURING WOODLANDS . 222 INSECTS AND FUNGI 223 THE CHESTNUT BLIGHT 223 Forest Management 225 Present and Future of the Forests 226 Index 229 ILLUSTRATIONS PLATE facing page I. Fig. 1.—View showing Reynolds Mine in the Arundel formation, 1 mile south of Hanover 32 Fig. 2.—View showing massive variegated clay of the Patapsco for- mation, near Hawkins Point 32 II. Fig. 1.—View of White Rocks, Patapsco River, showing sandstone ledges of Raritan formation 48 Fig. 2.—View of glass-sand quarry in Raritan formation near Stony Point, Severn River 48 III. Fig. 1.—View of the Magothy formation at Cape Sable (North Ferry Point), Magothy River.. 64 Pig. 2.—View showing the Matawan formation overlying the Magothy formation at Round Bay, Severn River 64 IV. Fig. 1.—View showing cliffs of diatomaceous earth of the Calvert formation at Fairhaven 80 Pig. 2.—View showing the contact of the Aquia and Nanjemoy for- mations in valley of Beard Creek 80 V. Fig. 1.—View showing recent filling of Patuxent River above Lyons Creek 96 Fig. 2.—View showing modern sea cliff and a Pleistocene cypress swamp in the Talbot formation, 1% miles south of Bodkin Point. 96 VI. Fig. 1.—View showing gravel pits in the Wicomico formation at Bragers, W. B. & A. R. R 112 Pig. 2.-—View of a pit of the Washington Hydraulic Pressed Brick Company, 1 mile south of Harmans 112 VII. Pig. 1.—View showing farm and woodland along South River 160 Fig. 2.-—View of watermelon patch showing fertility of Potomac sand north of Magothy River...; 160 VIII. Hailstones gathered at the U. S. Naval Academy after the storm of June 22, 1915 .184 IX. Fig. 1.—View of rolling farm lands and wood lots near Birdsville. 208 Fig. 2.—View of a mixed oak and chestnut forest protected from fires 208 FIGUBE PAGE J. Map of Maryland showing average annual temperature 176 2. Diagram showing variations in the length of the growing season at Annapolis and Jewell 178 3. Map of Maryland showing the length of the growing season 179 4. Map of Maryland showing average annual rainfall 180 • , ■ . PREFACE This volume is the eighth of a series of reports dealing with the physical features of the several counties of Maryland.
Recommended publications
  • RI37 Stratigraphic Nomenclature Of
    ,--' ( UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY REPORT OF INVESTIGATIONS NO.37 STRATIGRAPHIC NOMENCLATURE OF NONMARINE CRETACEOUS ROCKS OF INNER MARGIN OF COASTAL PLAIN IN DELAWARE AND ADJACENT STATES BY ROBERT R. JORDAN STATE OF DELAWARE.. NEWARK, DELAWARE JUNE 1983 STRATIGRAPHIC NOMENCLATURE OF NONMARINE CRETACEOUS ROCKS OF INNER MARGIN OF COASTAL PLAIN IN DELAWARE AND ADJACENT STATES By Robert R. Jordan Delaware Geological Survey June 1983 TABLE OF CONTENTS Page ABSTRACT. ....... 1 INTRODUCTION ..... 2 Purpose and Scope. 2 Acknowledgments.. 4 REGIONAL SETTING. 4 Regional Relationships . 4 Structural Features. 5 DESCRIPTIONS OF UNITS .. 8 Historical Summary 8 Potomac Formation. 13 Nomenclature. 13 Extent. 13 Lithology . 14 Patuxent Formation . 18 Nomenclature. 18 Extent.. 18 Lithology .... 18 Arundel Formation. 19 Nomenclature.. 19 Extent. .• 19 Lithology • 20 Page Patapsco Formation. .. 20 Nomenclature . 20 Extent .. 20 Lithology.. 20 Raritan Formation . 21 Nomenclature .. 21 Extent .. 22 Lithology.. 23 Magothy Formation .. 24 Nomenclature . 24 Extent .. 24 Lithology.. 25 ENVIRONMENTS OF DEPOSITION 28 AGES .... 29 SUBDIVISIONS AND CORRELATIONS .. 32 REFERENCES . 34 ILLUSTRATIONS Figure 1. Geologic map of nonmarine Cretaceous deposits .. ..•.• •.. 3 2. Structural features of the Coastal Plain. ............ 6 3. Schematic diagram of lateral and vertical relationships of nonmarine Cretaceous deposits•....•... 34 TABLES Page Table 1. Usage of group and formation names. 9 STRATIGRAPHIC NOMENCLATURE OF NONMARINE CRETACEOUS ROCKS OF INNER MARGIN OF COASTAL PLAIN IN DELAWARE AND ADJACENT STATES ABSTRACT Rocks of Cretaceous age deposited in continental and marginal environments, and now found along the inner edge of the northern Atlantic Coastal Plain, have historically been classified as the Potomac Group and the Potomac, Patuxent, Arundel, Patapsco, Raritan, and Magothy forma­ tions.
    [Show full text]
  • Stegosaurian Footprints from the Morrison Formation of Utah and Their Implications for Interpreting Other Ornithischian Tracks Gerard D
    Stegosaurian footprints from the Morrison Formation of Utah and their implications for interpreting other ornithischian tracks Gerard D. Gierliński and Karol Sabath Polish Geological Institute, Rakowiecka 4, 00-975 Warsaw, Poland. e-mail: [email protected] ABSTRACT - The supposed stegosaurian track Deltapodus Whyte & Romano, 1994 (Middle Jurassic of England) is sauro- pod-like, elongate and plantigrade, but many blunt-toed, digitigrade, large ornithopod-like footprints (including pedal print cast associated with the manus of Stegopodus Lockley & Hunt, 1998) from the Upper Jurassic of Utah, better fit the stego- saurian foot pattern. The Morrison Formation of Utah yielded other tracks fitting the dryomorph (camptosaur) foot pattern (Dinehichnus Lockley et al., 1998) much better than Stegopodus. If the Stegopodus pedal specimen (we propose to shift the emphasis from the manus to the pes in the revised diagnosis of this ichnotaxon) and similar ichnites are proper stegosaur foot- prints, Deltapodus must have been left by another thyreophoran trackmaker. Other Deltapodus-like (possibly ankylosaurian) tracks include Navahopus Baird,1980 and Apulosauripus Nicosia et al., 1999. Heel-dominated, short-toed forms within the Navahopus-Deltapodus-Apulosauripus plexus differ from the gracile, relatively long-toed Tetrapodosaurus Sternberg, 1932, traditionally regarded as an ankylosaurian track. Thus, the original interpretation of the latter as a ceratopsian track might be correct, supporting early (Aptian) appearance of ceratopsians in North America. Isolated pedal ichnites from the Morrison Formation (with a single tentatively associated manus print, and another one from Poland) and the only known trackways with similar footprints (Upper Jurassic of Asturias, Spain) imply bipedal gait of their trackmakers. Thus, problems with stegosaur tracks possibly stem from the expectation of their quadrupedality.
    [Show full text]
  • Preliminary Report on Ground, Virginia
    Plcue rcturn thb publication to thc Virginia Geologicd Suryey when you havc no furthcr uc for it. Portage will be rcfundcd, COMMONWEALTH OF VIRGINIA STATE COMMISSION ON CONSERVATTON AND DEVELOPMENT VIRGINIA GEOLOGICAL SURVEY ARTHUR BEVAN, Stde e'eologi.t Bulletin 4l 2tt Preliminary Report on Ground, Water Resources of Northern Virginia BY CADY PREPARED IN COOPERATION WITH THE I.II{ITED STATES GEOLOGICAL SURVEY UNIVERSITY, VIRGINIA 1933 COMMONWEALTH OF VIRGINIA STATE COMMISSION ON CONSERVATION .AND DEVELOPMENT VIRGINIA GEOLOGICAL SURVEY ARTHUR BEVAN' State Geolosict Bulletin 4l Preliminary Report on Ground, Water Resources of Northern Virginia BY C. CADY PREPARED IN COOPERATION WITH THE'UNITED STATES GEOLOGICAL SURVEY UNIVERSITY, VIRGINIA 1933 RICHMOND: DtvrsroN or Puncseso exo Pnrwrruc 1933 STATE COMMISSION ON CONSERVATION AND DEVELOPMENT Wrr,rranr E. Censon, Chai,runan,, Riverton Cor,Buam Wonrualr, Vi,ce-Chai,rtnoz, Richmond E. Gnrnrrrrr Doosor.r, Norfolk Tnouas L. Fannen, Charlottesville Juxrus P. FrsununN, Roanoke Lne LoNc, Dante Rurus G. Rorrnrs, Culpeper Rrcseno A. Grrr,rem, E r e c wt izt e S e c r e t ar y an d, T r e a s urer, Richmond lll LETTER OF TRANSMITTAL ColtlnoNwBALTH oF VrncrNre Vrncrxre Gnor.ocrcer, Sunvev IJmrvensrrv or VrncrNre Crrenr,omesvnr,q Vrncrmre, January 10, 1933. To the State Cowrnissi,on on Conservati,on and Develobrnent: Gpnmeueu: I have the honor to transmit and to recommend for publication as Bulletin 41 of the Virginia Geological Survey series of reports the manuscript and illustrations of a Preliwi,nary Report on Ground'-water Resources of Northern Vbgi.nia., by Mr. R. C.
    [Show full text]
  • HYDROGEOLOGIC FRAMEWORK of the COASTAL PLAIN of MARYLAND, DELAWARE, and the M
    HYDROGEOLOGIC FRAMEWORK OF THE COASTAL PLAIN OF MARYLAND, DELAWARE, AND THE m. DISTRICT OF COLUMBIA U.S. GEOJ,0 HCM. Hydrogeologic Framework of the Coastal Plain of Maryland, Delaware, and the District of Columbia By DON A. VROBLESKY and WILLIAM B. FLECK REGIONAL AQUIFER-SYSTEM ANALYSIS-NORTHERN ATLANTIC COASTAL PLAIN U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1404-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1991 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Vroblesky, Don A. Hydrogeologic framework of the coastal plain in Maryland, Delaware, and the District of Columbia. (U.S. Geological Survey professional paper ; 1404-E) Bibliography: p. Supt. of Docs. no. : I 19.16 : 1404E 1. Water, Underground Maryland. 2. Water, Underground Delaware. 3. Water, Underground Washington (D.C.) I. Fleck, William B. II. Title. III. Series: U.S. Geological Survey professional paper ; 1404-E. GB1025.M3V76 1989 551.49'0975 87-600120 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 FOREWORD THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM The Regional Aquifer-System Analysis (RASA) Program was started in 1978 following a congressional mandate to develop quantitative appraisals of the major ground-water systems of the United States. The RASA Program represents a systematic effort to study a number of the Nation's most important aquifer systems, which in aggregate underlie much of the country and which represent important components of the Nation's total water supply.
    [Show full text]
  • Download Download
    Vertebrate Anatomy Morphology Palaeontology 6:68-72 68 ISSN 2292-1389 Rebuttal of McFeeters, Ryan and Cullen, 2018, ‘Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): A Response to Brownstein (2017)’ Chase Doran Brownstein Stamford Museum, 39 Scofieldtown Road, Stamford, CT 06903, USA; [email protected] Abstract: The Arundel Clay of Maryland is among the only Early Cretaceous terrestrial units known from eastern North America. Research on some theropod dinosaur bones from this layer has indicated the presence of two ornithomimosaur taxa in the assemblage. However, a recent paper discussed issues with the definite assignment of any of these unguals to Ornithomimosauria and suggested that morphological differences originally interpreted to be indicative of the presence of two ornithomimosaurs could be explained by positional variation. Here, I show that substantial evidence persists for the presence of two ornithomimosaurs in the Arundel Clay assemblage, even considering the recent description of positional variation in ornithomimosaur pedal unguals. Furthermore, the argument against the confident assignment of these unguals to ornithomimosaurs is shown to be based on oversimplified comparisons that do not take into account the combination of features in the Arundel specimens that allow for their assignment to that clade. Although several small points made in the initial paper describing the Arundel specimens are incorrect or unsubstantiated, the differences between the Maryland unguals are outside the spectrum of positional variation and are indicative of the presence of two ornithomimosaurs in the Arundel Clay assemblage. The Arundel Clay of Maryland is an Aptian unit (e.g., Lipka major acts in that paper: (1) the confident assignment of the et al.
    [Show full text]
  • DINOSAURS Volume 2, Issue 5
    [ABCDE] CURRICULUM GUIDE: DINOSAURS Volume 2, Issue 5 e r I n E d u c a p a p t i o w s n P N e r o t g s r a P o m n t o g i n h s T a h e W C e u h r T r i f c u O l u e r m o C A t e T h h T e t C A o r m KLMNO e u l O u An Integrated Curriculum c f i r Resource Program T r h u e C W e a h s T h i n g t o n P m o a s r t g N o r e P w s n p o a i p t a e c r u I d n E INSIDE 2 Washington, B.C. 7 Official Dinosaur 9 A Look at Dinosaur Did Dinosaurs Live Capitalsaurus and Crossword in the Washington, Astrodon 5 D.C., area? 8 10 June 10 , 2003 © 2003 THE WASHINGTON POST COMPANY Volume 2, Issue 5 KLMNO An Integrated Curriculum For The Washington Post Newspaper In Education Program Is Capitalsaurus the Real Thing? Official Words KidsPost Article: “Washington, B.C.” Asteroid: Rocky and metallic objects that orbit Read and Discuss Lesson: Use original documents the Sun but are too small to be considered and multiple sources to form an Give students more information opinion. about dinosaurs in the D.C. planets. Asteroids that are likely to collide Level: Mid- to High metropolitan area: “Did Dinosaurs Subjects: Science, Reading Ever Live in the Washington, D.C., with Earth are called meteoroids.
    [Show full text]
  • BALTIMORE-WASHINGTON SUPERCONDUCTING MAGLEV PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT and SECTION 4(F) EVALUATION
    Section 4.13 Topography and Geology BALTIMORE-WASHINGTON SUPERCONDUCTING MAGLEV PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT AND SECTION 4(f) EVALUATION Draft Environmental Impact Statement and Section 4(f) Evaluation 0-1 Affected Environment, Environmental Consequences and Mitigation 4.13 Topography and Geology 4.13.1 Introduction Topography relates to the shape and features of the earth; and a geologic resource can be described as a naturally occurring feature that has formed during evolution of the earth. Geologic resources, including fossilized flora and fauna (i.e., paleontological resources), fossil fuels, mineral resources, and rock formations, may provide value to the human and/or physical environment. Geologic hazards, such as earthquakes, sinkholes, and landslides, can be described as a naturally occurring feature that may result in a threat to the human or physical environment. This section evaluates how the Superconducting Magnetic Levitation Project (SCMAGLEV Project) would interact with and potentially impact regional topography, geologic resources and hazards, as well as the SCMAGLEV Project’s location in relation to setting and features such as existing mines. Additional information about the geology of the area can be found in the Natural Environment Technical Report (Appendix D.10). 4.13.2 Regulatory Context and Methodology 4.13.2.1 Regulatory Context In accordance with the National Environmental Policy Act (NEPA), 42 U.S.C. § 4321 et seq., the Council on Environmental Quality (CEQ) regulations, 40 C.F.R. Parts 1500 - 1508, and the Federal Rail Administration’s (FRA) Procedures for Considering Environmental Impacts, 64 Fed. Reg. 28545 (May 26, 1999), FRA assessed the existing geologic conditions along the Build Alternatives to determine whether the SCMAGLEV Project would impact geologic resources.
    [Show full text]
  • The Iron Ores of Maryland, with an Account of the Iron Industry
    Hass 77,>0 3- Book ffjZd6 MARYLAND GEOLOGICAL AND ECONOMIC SURVEY WM. BULLOCK CLARK, State Geologist REPORT ON THE IRON ORES OF MARYLAND WITH AN ACCOUNT OF THE IRON INDUSTRY BY JOSEPH T. SINGEWALD, JR.- (Special Publication, Volume IX, Part III) THE JOHNS HOPKINS PRESS Baltimore, December, 1911 / / MARYLAND GEOLOGICAL AND ECONOMIC SURVEY WM. BULLOCK CLARK, State Geologist REPORT ON r? Sr THE IRON ORES OF MARYLAND / £ WITH AN ACCOUNT OF THE IRON INDUSTRY BY JOSEPH T. SINGEWALD, JR. M (Special Publication, Volume IX, Part III) THE JOHNS HOPKINS PRESS • Baltimore, December, 1911 V n, ffi ft- sre so i CONTENTS PAGE PART III. REPORT ON THE IRON ORES OF MARYLAND, WITH AN ACCOUNT OF THE IRON INDUSTRY. By Joseph T. Sxngewald, Jr. 121 The Ores of Iron.123 Magnetite . 124 Hematite . 124 Limonite . 124 Carbonate or Siderite. 125 Impurities in the Ores and Their Effects. 125 Mechanical Impurities. 125 Chemical Impurities. 126 Practical Considerations. 127 History of the Maryland Iron Industry. 128 The Colonial Period. 128 The Period from 1780 to 1830. 133 • The Period from 1830 to 1885. 133 The Period from 1885 to the present time. 136 Description of Maryland Iron Works.139 Maryland Furnaces. 139 Garrett County..'... 139 Allegany County. 139 Washington County. 143 Frederick County. 146 Carroll County. 149 Baltimore County. 150 Baltimore City. 159 Harford County. 160 Cecil County. 162 Howard County. 168 Anne Arundel County. 169 Prince George’s County. 171 Worcester County. 172 9 Other Iron Works in Maryland. 173 Allegany County. 173 Baltimore County. 173 Cecil County. 174 CONTENTS PAGE Queen Anne’s County.
    [Show full text]
  • A Diverse Mammal-Dominated, Footprint Assemblage from Wetland Deposits in the Lower Cretaceous of Maryland Ray Stanford1, Martin G
    A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland Ray Stanford1, Martin G. Lockley2, Compton Tucker3, Stephen Godfrey4 & Sheila M. Stanford1 A newly discovered assemblage of predominantly small tracks from the Cretaceous Patuxent Formation at NASA’s Goddard Space Flight Center, Maryland, reveals one of the highest track densities and diversities ever reported (~70 tracks, representing at least eight morphotypes from an area of only ~2 m2). The assemblage is dominated by small mammal tracks including the new ichnotxon Sederipes goddardensis, indicating sitting postures. Small crow-sized theropod trackways, the first from this unit, indicate social trackmakers and suggest slow-paced foraging behavior. Tracks of pterosaurs, and other small vertebrates suggest activity on an organic-rich substrate. Large well-preserved sauropod and nodosaurs tracks indicate the presence of large dinosaurs. The Patuxent Formation together with the recently reported Angolan assemblage comprise the world’s two largest Mesozoic mammal footprint assemblages. The high density of footprint registration at the NASA site indicates special preservational and taphonomic conditions. These include early, penecontemporaneous deposition of siderite in organic rich, reducing wetland settings where even the flesh of body fossils can be mummified. Thus, the track-rich ironstone substrates of the Patuxent Formation, appear to preserve a unique vertebrate ichnofacies, with associated, exceptionally-preserved body fossil remains for which there are currently no other similar examples preserved in the fossil record. Reports of true Mammalia tracks, from the Mesozoic, as distinct from tracks of presumed synapsids (therapsids) from early Mesozoic (mostly Triassic and Jurassic) dune facies, are rare, and mostly involve very small samples of isolated tracks.
    [Show full text]
  • Generalized Structure Contour Maps of Th E New Jersey Coastal Plain
    State of New Jersey Department of Conservation and Economic Devdopment H. Mat Adams, Commi._.cioner Division of Resource Development Kenneth H. Creveling, Director GENERALIZED STRUCTURE CONTOUR MAPS OF TH E NEW JERSEY COASTAL PLAIN by Horace G. Riehards F. H. Olmsted James L. Ruhle prepared by the U. S. Geological Survey in cooperation wit£ the State of New Jersey Division of Water Policy and Supply George R Shanklin, Director 1962 .° Reprinted 1983 CONTENTS Abstract .... ; .................................................................. iii Introduction .................................................................. 1 1 Scope and purpose ........................................................ Acknowledgments ......................................................... 1 Previous work ................................................................. 2 Geologieal setting ............................................................. 3 Pre-Cretaceous rocks ........................................................... 12 Nonmarine Cretaceous sediments, undifferentiated ................................ 12 MerchantviUe Formation and Woodbury Clay .................................... 17 Englishtown Formation ........................................................ 19 Marshalltown Formation ...................................................... 19 Wenonah Formation and Mount Laurel Sand ...................................... 22 Navesink Formation . .'... : ..................................................... 22 Red Bank Sand ..............................................................
    [Show full text]
  • Bulletin 19 of the Department of Geology, Mines and Water Resources
    COMMISSION OF MARYLAND GEOLOGICAL SURVEY S. JAMES CAMPBELL Towson RICHARD W. COOPER Salisbury JOHN C. GEYER Baltimore ROBERT C. HARVEY Frostburg M. GORDON WOLMAN Baltimore PREFACE In 1906 the Maryland Geological Survey published a report on "The Physical Features of Maryland", which was mainly an account of the geology and min- eral resources of the State. It included a brief outline of the geography, a more extended description of the physiography, and chapters on the soils, climate, hydrography, terrestrial magnetism and forestry. In 1918 the Survey published a report on "The Geography of Maryland", which covered the same fields as the earlier report, but gave only a brief outline of the geology and added chap- ters on the economic geography of the State. Both of these reports are now out of print. Because of the close relationship of geography and geology and the overlap in subject matter, the two reports were revised and combined into a single volume and published in 1957 as Bulletin 19 of the Department of Geology, Mines and Water Resources. The Bulletin has been subsequently reprinted in 1961 and 1966. Some revisions in statistical data were made in the 1961 and 1968 reprints. Certain sections of the Bulletin were extensively revised by Dr. Jona- than Edwards in this 1974 reprint. The Introduction, Mineral Resources, Soils and Agriculture, Seafood Industries, Commerce and Transportation and Manu- facturing chapters of the book have received the most revision and updating. The chapter on Geology and Physiography was not revised. This report has been used extensively in the schools of the State, and the combination of Geology and Geography in one volume allows greater latitude in adapting it to use as a reference or textbook at various school levels.
    [Show full text]
  • Article Fossil Plants from the National Park Service Areas of the National Capital Region Vincent L
    Proceedings of the 10th Conference on Fossil Resources Rapid City, SD May 2014 Dakoterra Vol. 6:181–190 ARTICLE FOSSIL PLANTS FROM THE NATIONAL PARK SERVICE AREAS OF THE NATIONAL CAPITAL REGION VINCENT L. SANTUCCI1, CASSI KNIGHT1, AND MICHAEL ANTONIONI2 1National Park Service, Geologic Resources Division, Washington, D.C. 20005 2National Park Service, National Capital Parks East, 1900 Anacostia Dr. S.E., Washington, D.C. 20020 ABSTRACT—Paleontological resource inventories conducted within the parks of the National Park Service’s National Capital Region yielded information about fossil plants from 10 parks. This regional paleobotanical inventory is part of a service-wide assessment being conducted throughout the National Park System to determine the scope, significance and distribution of fossil plants in parks. Fossil plants from the Paleozoic, Mesozoic, and Cenozoic are documented from numerous localities within parks of the National Capital Region. A Devonian flora is preserved at Chesapeake and Ohio Canal National Historic Park. Fossil plants from the Cretaceous Potomac Group are identified in several parks in the region including two holotype specimens of fossil plants described by Smithsonian paleobotanist Lester Ward from Fort Foote Park. Cretaceous petrified wood and logs are preserved at Prince William Forest Park. Pleistocene plant fossils and petrified wood were found at Presi- dent’s Park near the White House. A comprehensive inventory of the plant fossil resources found on National Park Service administered lands in the National Capitol Region will aid in our understanding of past climates and ecosystems that have existed in this region through time. INTRODUCTION understanding of past climates and ecosystems that have Fossils are an important resource because they allow existed in this region through time.
    [Show full text]