THE OSSIFICATION of the MIDDLE and INTERNAL EAR of the GOLDEN HAMSTER (Cricetus Auratus)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Congenital Malformations of the External and Middle Ear: High-Resolution CT Findings of Surgical Import
71 Congenital Malformations of the External and Middle Ear: High-Resolution CT Findings of Surgical Import Joel D. Swartz1 The external auditory canal, middle ear, and bulk of the ossicular chain develop from Eric N. Faerber1 the first branchial groove, first and second branchial arches, and first pharyngeal pouch. Embryologic development of these structures is complex and only rarely are two anomalies identical. Development of the inner ear structures occurs independently of external ear structures, and concomitant involvement is unusual. This study includes 11 cases of unilateral external auditory canal atresia and two cases of bilateral atresia. Eight cases (four bilateral) of isolated congenital ossicular anomalies are also included. Emphasis is placed on findings of surgical import. All patients were studied with computed tomography only, because it was believed that the bony and soft-tissue detail achieved is superior to that with conventional multidirectional tomography. High-resolution computed tomography (CT) has emerged as the method of choice for evaluation of the temporal bone. The purpose of this study was to provide a detailed analysis of congenital aural malformations to emphasize findings deemed critical by surgeons. Materials and Methods A General Electric 8800 CT/T scanner was used in all cases. Overlapping CT sections of 1.5 mm thickness were obtained in axial and coronal projections [1]. Infants and very young children required heavy sedation or general anesthesia. If an endotracheal tube was used, a coronal view in the supine position was necessary to facilitate patient monitoring. Excellent images were obtained in all patients, usually within 40 min . All images were targeted using high-bone-detail algorithms. -
ANATOMY of EAR Basic Ear Anatomy
ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age. -
Deformation of Avian Middle Ear Structures Under Static Pressure Loads, and Potential Regulation Mechanisms ⁎ Raf Claesa,B, , Pieter G.G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography Zoology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Zoology journal homepage: www.elsevier.com/locate/zool Deformation of avian middle ear structures under static pressure loads, and potential regulation mechanisms ⁎ Raf Claesa,b, , Pieter G.G. Muyshondtc, Joris J.J. Dirckxc, Peter Aertsa,d a University of Antwerp, Laboratory of Functional Morphology, Universiteitsplein 1, B-2610 Antwerp, Belgium b Vrije Universiteit Brussel, Department of Mechanical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium c University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp, Belgium d University of Ghent, Department of Movement and Sport Science, Watersportlaan 2, B-9000 Ghent, Belgium ARTICLE INFO ABSTRACT Keywords: Static pressure changes can alter the configuration and mechanical behavior of the chain of ossicles, which may Pharyngotympanic tube affect the acoustic transfer function. In mammals, the Eustachian tube plays an important role in restoring Ambient pressure ambient middle ear pressure, hence restoring the acoustic transfer function and excluding barotrauma of the Middle ear middle and inner ear. Ambient pressure fluctuations can be potentially extreme in birds and due to the simple Chicken structure of the avian middle ear (one ossicle, one muscle), regulation of the middle ear pressure via reflexive Mallard opening of the pharyngotympanic tube appears all the -
Research Reports
ARAŞTIRMALAR (ResearchUnur, Ülger, Reports) Ekinci MORPHOMETRICAL AND MORPHOLOGICAL VARIATIONS OF MIDDLE EAR OSSICLES IN THE NEWBORN* Yeni doğanlarda orta kulak kemikciklerinin morfometrik ve morfolojik varyasyonları Erdoğan UNUR 1, Harun ÜLGER 1, Nihat EKİNCİ 2 Abstract Özet Purpose: Aim of this study was to investigate the Amaç: Yeni doğanlarda orta kulak kemikciklerinin morphometric and morphologic variations of middle ear morfometrik ve morfolojik varyasyonlarını ortaya ossicles. koymak. Materials and Methods: Middle ear of 20 newborn Gereç ve yöntem: Her iki cinse ait 20 yeni doğan cadavers from both sexes were dissected bilaterally and kadavrasının orta kulak boşluğuna girilerek elde edilen the ossicles were obtained to investigate their orta kulak kemikcikleri üzerinde morfometrik ve morphometric and morphologic characteristics. morfolojik inceleme yapıldı. Results: The average of morphometric parameters Bulgular: Morfometrik sonuçlar; malleus’un toplam showed that the malleus was 7.69 mm in total length with uzunluğu 7.69 mm, manibrium mallei’nin uzunluğu 4.70 an angle of 137 o; the manibrium mallei was 4.70 mm, mm, caput mallei ve processus lateralis arasındaki and the total length of head and neck was 4.85 mm; the uzaklık 4.85 mm, manibrium mallei’nin ekseni ve caput incus had a total length of 6.47 mm, total width of 4.88 mallei arasındaki açı 137 o, incus’un toplam uzunluğu mm , and a maximal distance of 6.12 mm between the 6.47 mm, toplam genişliği 4.88 mm, crus longum ve tops of the processes, with an angle of 99.9 o; the stapes breve’nin uçları arasındaki uzaklık 6.12 mm, cruslar had a total height of 3.22 mm, with stapedial base being arasındaki açı 99.9 o, stapesin toplam uzunluğu 2.57 mm in length and 1.29 mm in width. -
Organum Vestibulocochleare INTERNAL EAR MIDDLE EAR EXTERNAL EAR PETROSAL BONE- Eq EXTERNAL EAR AURICLE
EAR organum vestibulocochleare INTERNAL EAR MIDDLE EAR EXTERNAL EAR PETROSAL BONE- Eq EXTERNAL EAR AURICLE The external ear plays the role of an acoustic antenna: auricle the auricle (together with the head) collects and focuses sound waves, the ear canal act as a resonator. tympanic membrane anular cartilage meatus acusticus externus EXTERNAL EAR EXTERNAL EAR AURICLE scutiform cartilage Auricular muscles: -Dorsal -Ventral -Rostral -Caudal EXTERNAL EAR MEATUS ACUSTICUS EXTERNUS auricular cartilage vertical canal auditory ossicles horizontal cochlea canal auditory tube tympanic tympanic eardrum bulla cavity tympanic membrane MIDDLE EAR Auditory ossicles STAPES INCUS Tympanic cavity: (anvil) (stirrup) - epitympanium - mesotympanium - hypotympanium MALLEUS (hammer) auditory vestibular window- ossicles or oval window through which mechanical stimuli (transmitted by the auditory ossicles) enter the epitympanic internal ear for translation recess into nerve impulses auditory tube (Eustachian tube) cochlear window- or round window tympanic cavity bulla tympanica through which the vibration of the perilympha is absorbed MIDDLE EAR MIDDLE EAR GUTTURAL POUCH- Eq MIDDLE EAR AUDITORY OSSICLES head INCUS processus rostralis (stirrup) STAPES processus muscularis (anvil) manubrium short crus body MALLEUS (hammer) Two muscles of the ossicles: long crus m. tensor tympani- n. tensoris tympani ex. n. base mandibularis (footplate) m. stapedius- n. stapedius ex. n. facialis crus The muscles fix the bones and protect the cochlea crus against the harmful effects -
COVID-19 and Ear Surgery: (RK Jackler, Stanford)
COVID-19 and Ear Surgery: (RK Jackler, Stanford) To the best of our knowledge no one knows whether the respiratory mucosal lining the middle ear and mastoid air cells system is involved by COVID19 or not – but it seems likely that they are. As the rest of the airway is involved, and the nose and nasopharynx intensely so, it seems probable that the lining of the eustachian tube, middle ear, and mastoid air cell system are all contaminated. Many articles verify the presence of respiratory virus in the middle during acute illnesses. (see list below) Two references specifically document coronavirus (not COVID-19 specific) in the middle ear during URI. These viruses have affinity for respiratory mucosa and may populate the otic structures either via direct mucosal spread or viremia. Drilling through the mastoid creates droplets and aerosols in significant clouds which, if virus is present, could risk infecting everyone in the operating room environment. As contaminated mists harbor viable virus for several hours, especially in enclosed spaces, caution is warranted. For these reasons, I think we should consider mastoidectomy to be a procedure of heightened risk. It may be relevant that infections among OR staffs following transnasal endoscopic surgery which uses powered instruments (including drills) that create plumes of droplets has been reported. Ideally, we should test for COVID-19 preoperatively for any ear surgery and, if negative, proceed with surgery using standard PPE (face shields and N95). Of course, we cannot entirely rule out early infections with undetectable viral load or even false negative testing. If positive, surgery should be delayed until the patient has cleared the disease. -
Petubes Patient Handout.Pdf
Division of Pediatric Otolaryngology Information on Tympanostomy Tubes Tympanostomy tubes are small plastic or metal tubes that are placed into the tympanic membrane or ear drum. How long will the tube stay in place? Tubes usually fall out of the ear in 6 months- 2 years. If they remain in longer than 2 to 3 years they are sometimes removed. What is involved with Tympanostomy tube placement? This surgery is usually done under general anesthesia. The eardrum is examined using a microscope. A small hole is made in the ear drum called a myringotomy, fluid is removed, and the tube is placed. Tube in the eardrum What medical conditions are treated with tubes? Recurrent middle ear infections or frequent acute otitis media Otitis media with effusion or fluid in middle ear associated with hearing loss Eustachian tube dysfunction causing hearing loss or eardrum structure changes What is the Eustachian tube? This is the canal that links the middle ear with the throat. This tube allows air into the middle ear and drainage of fluid. This tube grows in width and length until children are about 5 years old. Reasons that the Eustachian tube may not work properly: Viral illness, exposure to allergens or tobacco smoke may lead to swelling of the eustachian tube resulting in fluid buildup in the middle ear. Children with cleft palate and craniofacial syndromes like Down’s syndrome may have poor eustachian tube function. How will Tympanostomy tube help my child? They allow air to re-enter middle ear space They reduce the number and severity of infections They improve hearing loss cause by middle ear fluid Why is adenoidectomy sometimes done with the Tympanostomy tubes? Adenoidectomy is the removal of the adenoid tissue behind the nose. -
Rush Eustachian Tube Surgery Program
For more information or to refer a patient, call (312) 942-6100. Rush Eustachian Tube Surgery Program The Eustachian tube can be the breeding ground of many From Rush’s 2017 findings of Cartilage hearing issues, including infections in the middle ear (otitis Implantation for Patulous Eustachian media), fluid trapped in the middle ear (otitis media with Tubes, results showed that out of effusion), negative pressure or vacuum in the middle ear 25 participants 62% of the operated that stretches and damages the eardrum (atelectasis), and ETs had improved or completely trapping of outer ear skin in the collapsed middle ear forming a growing cyst resolved autophony at their latest (cholesteatoma). If the Eustachian tube is open all the time because it is too wide evaluation and no patients developed then disturbing symptoms of popping and voice sensitivity can occur, which is obstructive symptoms. 1 called Patulous Eustachian Tube, referred to as PET. Rush Otolaryngology’s Eustachian Tube Surgery Program progresses the of the operated diagnosis of these conditions by performing a nasal endoscopy, allowing the % ETs had improved observance of Eustachian tube swelling or narrowing, which can be seen in autophony patients with allergies, gastric reflux, or sinus diseases. Medications can be used 62 initially to decrease Eustachian tube narrowing, but if medical treatment is not successful then surgical widening of the tube may be beneficial. Eustachian Tube Balloon Dilation. To help restore function to a narrow or blocked Eustachian tube the surgeon can place a specially made balloon in the opening of the Eustachian tube and inflate it for a short time, which stretches the opening to a more normal size. -
Temporal Bone, Normal Anatomy, Computed Tomography/Histology
Temporal Bone Normal Anatomy Computed Tomography /Histology Correlation Otopathology Laboratory Department of Radiology Massachusetts Eye and Ear Eric F. Curtin Barbara J. Burgess Dianne D. Jones Jennifer T. O’Malley Hugh D. Curtin MD Otopathologylaboratory.org Facial nerve Malleus Incus Cochlea Lateral canal Oval Window Axial CT Red Arrow -Facial nerve VII Attic IAC Vest LSCC Red Arrow -Facial nerve VII M I M-Malleus I-Incus Vest Cochlea S-Stapes VII S Interscalar septum M M-Modiolus Interscalar septum M M-Modiolus Anterior epitympanic recess Cog Cochleariform process Cochlea Facial recess S-Stapes Pyramidal process S Sinus Tympani ME ME-middle ear RW-round window Cochlea RW Stapedius M Carotid TMJ plate Jugular plate Coronal CT FN 2 FN 1 Cochlea Carotid Malleus Tegmen Incus FN 2 Oval window Scutum Lateral Semicircular Canal Pyramidal process Round Window Jugular Facial Nerve Key image lateral canal facial nerve oval window .. Poschl CT Carotid Tensor tympani Eustachian tube VII1 IAC Basilar turn cochlea Apical turn cochlea Turn 2 cochlea VII1 VII2 Tensor tympani VII2 Jugular vein Tensor tympani Jugular vein Cochleariform process Superior SCC M M-malleus VII2 Oval W Round W Lateral canal Common crus TMJ Lateral SCC VII2 I S I –Incus S- Stapes Tegmen Vestibular aqueduct VII2 VII3 EAC Stenvers CT SSCC VII1 Carotid VII1 is separated from nerve to lateral canal by Bill’s bar Canal for nerve to lateral SCC VII VII1 Basilar turn cochlea LSCC SSCC VII3 Round window Styloid process Vestibule VII3 PSCC Common Crus IAC Axial CT Histology correlation Utricle Lateral Semicircular Canal Vestibule Vestibule Saccule Utricle Vestibule Saccule Utricle Vestibule Saccule Utricle Anterior Crus of the Stapes Carotid Tympanic Carotid plate membrane Middle Ear Jugular Jugular plate Coronal CT Histology correlation Saccule Otopathology Laboratory Department of Radiology Massachusetts Eye and Ear Otopathologylaboratory.org Eric F. -
The Nervous System: General and Special Senses
18 The Nervous System: General and Special Senses PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Sensory information arrives at the CNS • Information is “picked up” by sensory receptors • Sensory receptors are the interface between the nervous system and the internal and external environment • General senses • Refers to temperature, pain, touch, pressure, vibration, and proprioception • Special senses • Refers to smell, taste, balance, hearing, and vision © 2012 Pearson Education, Inc. Receptors • Receptors and Receptive Fields • Free nerve endings are the simplest receptors • These respond to a variety of stimuli • Receptors of the retina (for example) are very specific and only respond to light • Receptive fields • Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus • Small receptive fields have receptors close together, which makes it easy to localize a stimulus. © 2012 Pearson Education, Inc. Figure 18.1 Receptors and Receptive Fields Receptive Receptive field 1 field 2 Receptive fields © 2012 Pearson Education, Inc. Receptors • Interpretation of Sensory Information • Information is relayed from the receptor to a specific neuron in the CNS • The connection between a receptor and a neuron is called a labeled line • Each labeled line transmits its own specific sensation © 2012 Pearson Education, Inc. Interpretation of Sensory Information • Classification of Receptors • Tonic receptors -
Endoscopic Treatment of Middle Ear Myoclonus with Stapedius and Tensor Tympani Section: a New Minimally-Invasive Approach
British Journal of Medicine & Medical Research 4(17): 3398-3405, 2014 SCIENCEDOMAIN international www.sciencedomain.org Endoscopic Treatment of Middle Ear Myoclonus with Stapedius and Tensor Tympani Section: A New Minimally-Invasive Approach Natasha Pollak1*, Roya Azadarmaki2 and Sidrah Ahmad1 1Department of Otolaryngology–Head and Neck Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA. 2Metropolitan NeuroEar Group, Rockville, Maryland, USA. Authors’ contributions This work was carried out in collaboration between all authors. Author NP designed study, performed surgery, literature review, writing, reviewing. Author RA literature review, writing, reviewing. Author SA performed surgery, writing, reviewing. All authors read and approved the final manuscript. Received 26th January 2014 th Case Study Accepted 11 March 2014 Published 27th March 2014 ABSTRACT Aims: We describe a new, entirely endoscopic surgical technique for treatment of middle ear myoclonus. Case Presentation: In our patient, the stapedius and tensor tympani tendons were sectioned to control chronic middle ear myoclonus. The procedure was performed using endoscopic ear surgery techniques, with the aid of rigid Hopkins rod endoscopes. Control of the pulsatile tinnitus was achieved after endoscopic tenotomy of the stapedius and tensor tympani, without any complications. Discussion and Conclusion: Endoscopic tensor tympani and stapedius tendon section is a new, minimally invasive treatment option for middle ear myoclonus that should be considered as a first line surgical approach in patients who fail medical therapy. The use of an endoscopic approach allows for easier access and vastly superior visualization of the relevant anatomy, which in turn allows the surgeon to minimize dissection of healthy tissue for exposure. The entire operation, including raising the tympanomeatal flap and tendon section can be safely completed under visualization with a rigid endoscope with good control of the pulsatile tinnitus. -
Interventions for Adult Eustachian Tube Dysfunction: a Systematic Review
HEALTH TECHNOLOGY ASSESSMENT VOLUME 18 ISSUE 46 JULY 2014 ISSN 1366-5278 Interventions for adult Eustachian tube dysfunction: a systematic review Alexis Llewellyn, Gill Norman, Melissa Harden, Andrew Coatesworth, Daniel Kimberling, Anne Schilder and Catriona McDaid DOI 10.3310/hta18460 Interventions for adult Eustachian tube dysfunction: a systematic review Alexis Llewellyn,1 Gill Norman,1 Melissa Harden,1 Andrew Coatesworth,2 Daniel Kimberling,3 Anne Schilder4 and Catriona McDaid1* 1Centre for Reviews and Dissemination, University of York, York, UK 2Ear, Nose and Throat Department, York Hospital, York, UK 3Gale Farm Surgery, York, UK 4evidENT University College London Ear Institute, Royal National Throat, Nose and Ear Hospital University College London, London, UK *Corresponding author Declared competing interests of authors: none Published July 2014 DOI: 10.3310/hta18460 This report should be referenced as follows: Llewellyn A, Norman G, Harden M, Coatesworth A, Kimberling D, Schilder A, et al. Interventions for adult Eustachian tube dysfunction: a systematic review. Health Technol Assess 2014;18(46). Health Technology Assessment is indexed and abstracted in Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded (SciSearch®) and Current Contents®/ Clinical Medicine. Health Technology Assessment NICE TAR and DAR ISSN 1366-5278 (Print) ISSN 2046-4924 (Online) Five-year impact factor: 5.804 Health Technology Assessment is indexed in MEDLINE, CINAHL, EMBASE, The Cochrane Library and the ISI Science Citation Index and is assessed for inclusion in the Database of Abstracts of Reviews of Effects. This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE) (www.publicationethics.org/).