Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions 1521-0081/68/1/168–241$25.00 http://dx.doi.org/10.1124/pr.115.011411 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:168–241, January 2016 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: MARKKU KOULU Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions Janne T. Backman, Anne M. Filppula, Mikko Niemi, and Pertti J. Neuvonen Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.) Abstract ...................................................................................169 I. Introduction . ..............................................................................169 II. Basic Characteristics of Cytochrome P450 2C8 . ..........................................170 A. Genomic Organization and Transcriptional Regulation . ...............................170 B. Protein Structure ......................................................................171 C. Expression .............................................................................172 III. Substrates of Cytochrome P450 2C8. ......................................................173 A. Drugs..................................................................................173 1. Anticancer Agents...................................................................173 Downloaded from 2. Antidiabetic Agents. ................................................................183 3. Antimalarial Agents.................................................................183 4. Lipid-lowering Drugs. ............................................................184 5. Other Drugs. .......................................................................184 6. Glucuronide Metabolites.............................................................186 B. Endogenous and Natural Compounds. ................................................187 by guest on March 4, 2019 IV. Pharmacogenetics. ........................................................................187 A. Population Genetics . ..................................................................187 B. Functional Studies . ..................................................................191 C. Effects on Drug Metabolism in Humans ................................................192 V. In Vitro Inhibition and Induction of Cytochrome P450 2C8 . ...............................193 A. Reversible Inhibition . ..................................................................193 1. Drugs That Act as Inhibitors of Cytochrome P450 2C8. ..............................193 2. Natural Compounds. ................................................................210 B. Metabolism-dependent Inhibition . ......................................................210 C. Induction ..............................................................................210 VI. Clinical Drug Interactions Mediated via Cytochrome P450 2C8 .............................212 A. General Aspects........................................................................212 B. Gemfibrozil as Prototypical Inhibitor . ................................................214 1. In Vitro Versus In Vivo.. ............................................................214 2. Gemfibrozil Dose Versus CYP2C8 Inhibition. .....................................216 3. Onset and Duration of CYP2C8 Inhibition by Gemfibrozil. .........................216 4. Quantification of CYP2C8-Mediated Drug Interactions in Humans. ..................216 C. Inhibition-Mediated Drug Interactions and Their Clinical Significance ..................217 1. Repaglinide. ........................................................................217 2. Other Oral Antidiabetic Drugs.......................................................218 3. Amodiaquine. .......................................................................219 4. Statins..............................................................................219 5. Anticancer Drugs.. ..................................................................220 This work was supported by grants from the Academy of Finland [Grant decision 278123, 2014], the Helsinki University Central Hospital Research Fund, and the Sigrid Juselius Foundation (Helsinki, Finland). Address correspondence to: Prof. Janne T. Backman, Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, P.O. Box 705, FI-00029 HUS, Finland. E-mail: [email protected] dx.doi.org/10.1124/pr.115.011411. 168 Role of CYP2C8 in Drug Metabolism and Interactions 169 6. Antiviral Drugs. ..................................................................221 7. Antiasthmatic Drugs. ............................................................221 8. Other Substrate or Inhibitor Drugs. ................................................221 D. Induction-Mediated Drug Interactions . ................................................222 1. Rifampin (Rifampicin). ............................................................222 VII. Points to Consider When Investigating Cytochrome P450 2C8-Mediated Drug Metabolism and Interactions . ............................................................222 A. InVitro................................................................................222 1. General Aspects. ..................................................................222 2. Assessment of CYP2C8 Activity In Vitro. ..........................................223 3. In Vitro Methods to Estimate the Contribution of CYP2C8 in the Metabolism of a Drug. ........................................................................224 B. In Vivo . ..............................................................................224 1. General Aspects. ..................................................................224 2. In Vivo Cytochrome P450 2C8 Probe Substrates. ....................................226 3. In Vivo Cytochrome P450 2C8 Probe Inhibitors. .....................................226 VIII. Conclusions and Future Prospects..........................................................227 Acknowledgments. ........................................................................228 References . ..............................................................................228 Abstract——During the last 10-15 years, cytochrome glucuronide metabolites interact with CYP2C8 as P450 (CYP) 2C8 has emerged as an important drug- substrates or inhibitors, suggesting that an interplay metabolizing enzyme. CYP2C8 is highly expressed in between CYP2C8 and glucuronides is common. Lack of human liver and is known to metabolize more than 100 fully selective and safe probe substrates, inhibitors, drugs. CYP2C8 substrate drugs include amodiaquine, and inducers challenges execution and interpretation cerivastatin, dasabuvir, enzalutamide, imatinib, of drug-drug interaction studies in humans. Apart from loperamide, montelukast, paclitaxel, pioglitazone, drug-drug interactions, some CYP2C8 genetic variants repaglinide, and rosiglitazone, and the number is are associated with altered CYP2C8 activity and exhibit increasing. Similarly, many drugs have been identified significant interethnic frequency differences. Herein, as CYP2C8 inhibitors or inducers. In vivo, already a small we review the current knowledge on substrates, inhibitors, dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a inducers, and pharmacogenetics of CYP2C8, as well as strong, irreversible inhibitor of CYP2C8. Interestingly, its role in clinically relevant drug interactions. In recent findings indicate that the acyl-b-glucuronides addition, implications for selection of CYP2C8 marker of gemfibrozil and clopidogrel cause metabolism- and perpetrator drugs to investigate CYP2C8-mediated dependent inactivation of CYP2C8, leading to a strong drug metabolism and interactions in preclinical and potential for drug interactions. Also several other clinical studies are discussed. I. Introduction (HMG-CoA) reductase inhibitor cerivastatin, a CYP2C8 substrate, resulting in rhabdomyolysis cases and fatalities Cytochrome P450 (CYP) 2C8 accounts for approxi- mately 6–7% of the total hepatic CYP content (Rowland brought attention to the importance of CYP2C8 in drug Yeoetal.,2004;Inoueetal.,2006; Rostami-Hodjegan and metabolism (Backman et al., 2002; Staffa et al., 2002; Tucker, 2007; Achour et al., 2014). The importance of Wang et al., 2002; Chang et al., 2004; Huang et al., 2008). CYP2C8 causing variation in drug response via drug-drug The event was the onset of a broadening scientific in- interactions and pharmacogenetic polymorphisms has terestinCYP2C8,promptlyconvincingdrugregulatory been recognized only for the last 10–15 years. In the authorities to acknowledge CYP2C8 as one of the major beginning of the millennium, the pharmacokinetic drug- drug-metabolizing CYP enzymes. drug interaction between the fibric acid derivative gemfi- Drugs that were introduced into clinical use before brozil and the 3-hydroxy-3-methylglutaryl-coenzyme A the role of CYP2C8 was recognized may have deficient ABBREVIATIONS: AUC, area under the plasma concentration-time curve; C/EBPa, CCAAT/enhancer-binding protein a; CAR, constitutive androstane receptor; CITCO, [6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime; CLint, intrinsic clearance; Cmax, peak concentration; CYP, cytochrome P450; EMA, European Medicines Agency; FDA, Food and Drug Administration; GR, glucocorticoid receptor; HLM, human
Recommended publications
  • Real World Efficacy and Tolerability of Acotiamide, in Relieving Meal
    testinal & in D o i tr g s e Journal of Gastrointestinal & a s t G i v f e o Narayanan et al., J Gastrointest Dig Syst 2018, 8:1 S l y a s n r ISSN: 2161-069Xt Digestive System DOI: 10.4172/2161-069X.1000553 e u m o J Research Article Open Access Real World Efficacy and Tolerability of Acotiamide, in Relieving Meal- related Symptoms of Functional Dyspepsia Varsha Narayanan*, Amit Bhargava and Shailesh Pallewar 1Department of Medical Services and Research, Lupin Ltd., India *Corresponding author: Narayanan V, Department of Medical Services and Research, Lupin Ltd., Mumbai, India, Tel: +912266402222; E-mail: [email protected] Received date: February 09, 2018; Accepted date: February 21, 2018; Published date: February 27, 2018 Copyright: © 2018 Narayanan V, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: Functional Dyspepsia (FD) is a highly prevalent clinical condition that imposes negative economic burden on health-care system as well as greatly impairs quality of life. Treatment of non-specific and bothersome meal-related FD symptoms like post-prandial fullness, upper abdominal bloating and early satiety, is a therapeutic challenge for the clinicians as poorly-defined and ill-understood pathogenesis has hampered efforts to develop effective treatments. Acotiamide is first-in-class drug that exerts its gastro-kinetic effect by enhancing acetylcholine release. Though evidence of its efficacy and tolerance are available through randomized clinical trials, real world data from its regular in-clinic use is lacking.
    [Show full text]
  • PN0496-Acotiamide.Pdf
    Acotiamide hydrochloride hydrate (Acofide®) 盐酸阿考替胺 Z-338 in Zeria; YM-443 in Astellas Tablet, oral, EQ 100 mg acotiamide Acotiamide is a peripheral acetylcholinesterase inhibitor, indicated for the treatment of functional dyspepsia (FD), which was first-in-class drug to treat FD in the world and approved in 2013 by Japan PMDA. It was originally discovered by Zeria, and co-developed with Astellas. The drug is co-marketing in Japan with a single brand name. The human recommended starting dose is 100 mg at a time, and 3 times a day before meals. Worldwide Key Approvals Global Sales ($Million) Key Substance Patent Expiration 2016-May (US5981557A) 2016-May (EP0870765B1) 2013-Mar (JP) Not available 2021-May (JP3181919B2) 2016-May (CN1063442C) Mechanism of Action Acotiamide hydrochloride hydrate is an acetylcholinesterase (AChE) inhibitor and enhanced the acetylcholine (ACh)-induced contraction and motility of the gastric antrum and the gastric body. Target Binding Selectivity In vitro Efficacy In vivo Efficacy Mixed pattern: Ki1= 0.61 µM Effect dose of contraction in gastric sample: Significantly improved the gastrointestinal motility: Ki2= 2.7 µM ACh-induced: at 1 µM In normal and gastric hypomotility dogs: at 10 mg/kg. Inhibition: IC50= 3 µM Electrical-induced: at 0.3 µM In gastric hypomotility rats: at 100 mg/kg. Pharmacokinetics Parameters Rats Dogs Healthy Humans 3 10 3 10 50 mg 100 mg 200 mg 400 mg 800 mg Dose (mg/kg) (i.v.) (p.o.) (i.v.) (p.o.) (p.o.) (p.o.) (p.o.) (p.o.) (p.o.) Tmax (hr) - 0.08 - 0.5 2.75 2.42 2.08 2.25 2.13 Cmax
    [Show full text]
  • HIV-Infected Patients
    New Drugs for the Treatment-Experienced Patient Joseph Eron, md Associate Professor of Medicine and Director, Clinical Core unc Center for aids Research, University of North Carolina at Chapel Hill Summary by Tim Horn Edited by Jay Dobkin, md; Michael Saag, md reatment options for antiretro- humans by adenosine deaminase into D- Deeks and his colleagues in 1998 demon- viral-experienced patients leave a dioxolane guanine (dxg), a metabolite that strated a 1 log reduction in hiv-rna in hiv- lot to be desired. According to Dr. has potent activity against hiv and hbv. infected patients—more than 50% of whom Joe Eron, patients who have treat- According to in vitro data presented at were treatment-experienced—who received ment experience in all three classes the 3rd International Workshop on hiv tenofovir df 300 mg once daily as of currently available antiretrovi- Drug Resistance and Treatment Strategies, monotherapy for 28 days (Deeks, 1998). Trals have, at best, a 30% chance of re- held in June 1999, dapd was found to in- According to in vitro data presented by ducing their viral load to levels below 400 hibit wild-type and mutant isolates resistant Gilead’s Dr. Michael Miller at the recent copies/mL upon initiating a salvage regi- to azt (Retrovir) and 3TC (Borroto-Esoda, 4th International Resistance Workshop, the men. Cross-resistance within each class of 1999). The drug was also reported to be ac- resistance pattern for tenofovir df is simi- drugs, particularly the protease inhibitors tive against strains collected from patients lar to that of its chemical predecessor adefo- (pis) and non-nucleoside reverse tran- who have failed various nrti and nnrti vir, a compound no longer in development scriptase inhibitors (nnrtis), essentially combination therapies, including those for the treatment of hiv (Miller, 2000).
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • A Abdominal Aortic Aneurysm, 1405–1419 ABR. See Auditory
    Index A Acute chest syndrome, 2501 Abdominal aortic aneurysm, 1405–1419 Acute cold stress, 378 ABR. See Auditory brainstem response (ABR) Acute cytokines, 3931 Abyssinones, 4064, 4073 Acute estrogen deprivation, 1336 Accelerated atherosclerosis, 3473, 3474, Acute ischemic stroke (AIS), 2195, 2198, 3476, 3478 2209, 2246–2252, 2265 Accidental hypothermia, 376 Acute kidney injury (AKI), 2582–2584, ACEIs. See Angiotensin-converting enzyme 2587–2591 inhibitors (ACEIs) Acute respiratory distress syndrome, 635 A549 cells, 177, 178 Acyl-CoA dehydrogenase (Acyl-CoADH), 307 Acetaldehyde, 651, 653, 1814 AD. See Alzheimer’s disease (AD) Acetaminophen, 630–631, 1825 Adaptation to intermittent hypoxia (AIH), N-acetyl-p-benzoquinone imine (NAPQI), 2213–2214 1771, 1773–1775 Adaptive immunity in interstitial lung N-Acetylaspartate, 2436 disease, 1616 Acetylcholine (ACh), 2277, 2278, 2280, 2281, Adaptive response, 1796–1798 2286, 2910, 2915 Adaptor protein SchA, 915 Acetylcholine receptor (ACh-R), 2910 AD assessment scale, cognitive scale Acetylcholinesterase (AChE) inhibitors, 2356, (ADAScog), 2362 2359, 3684 Ade´liepenguins (Pygoscelis adeliae),53 N-Acetyl-L-cysteine, 3588–3590, 3592 Adenine, 900, 902, 932 Acetyl radical, 2761 Adenine nucleotide translocase (ANT), 900, Acetylsalicylic acid (ASA), 2382–2383 902–905, 917, 918, 921, 922, 928 ACh. See Acetylcholine (ACh) Adenosine, 382, 387, 1951, 1953–1954, 2915 Acid b-oxidation, 798 Adenosine deaminase, 2436, 2440 Acidosis, 380–381, 3950, 3951, 3954–3956 Adenosine diphosphate (ADP), 3383–3386 Aconitase,
    [Show full text]
  • Inhibition of Cytochrome P450 2C8-Mediated Drug Metabolism by the Flavonoid Diosmetin
    Drug Metab. Pharmacokinet. 26 (6): 559­568 (2011). Copyright © 2011 by the Japanese Society for the Study of Xenobiotics (JSSX) Regular Article Inhibition of Cytochrome P450 2C8-mediated Drug Metabolism by the Flavonoid Diosmetin Luigi QUINTIERI1,PietroPALATINI1,StefanoMORO2 and Maura FLOREANI1,* 1Department of Pharmacology and Anaesthesiology, University of Padova, Italy 2Molecular Modeling Section (MMS), Department of Pharmaceutical Sciences, University of Padova, Italy Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk Summary: The aim of this study was to assess the effects of diosmetin and hesperetin, two flavonoids present in various medicinal products, on CYP2C8 activity of human liver microsomes using paclitaxel oxidation to 6¡-hydroxy-paclitaxel as a probe reaction. Diosmetin and hesperetin inhibited 6¡-hydroxy- paclitaxel production in a concentration-dependent manner, diosmetin being about 16-fold more potent than hesperetin (mean IC50 values 4.25 « 0.02 and 68.5 « 3.3 µM for diosmetin and hesperetin, respectively). Due to the low inhibitory potency of hesperetin, we characterized the mechanism of diosmetin-induced inhibition only. This flavonoid proved to be a reversible, dead-end, full inhibitor of CYP2C8, its mean inhibition constant (Ki)being3.13« 0.11 µM. Kinetic analysis showed that diosmetin caused mixed-type inhibition, since it significantly decreased the Vmax (maximum velocity) and increased the Km value (substrate concentration yielding 50% of Vmax) of the reaction. The results of kinetic analyses were consistent with those of molecular docking simulation, which showed that the putative binding site of diosmetin coincided with the CYP2C8 substrate binding site. The demonstration that diosmetin inhibits CYP2C8 at concentrations similar to those observed after in vivo administration (in the low micromolar range) is of potential clinical relevance, since it may cause pharmacokinetic interactions with co- administered drugs metabolized by this CYP.
    [Show full text]
  • Study Protocol and Statistical Analysis Plan
    Propranolol and Gene Expression in HCT Protocol v3.0, January 15, 2016 RANDOMIZED CONTROLLED PILOT STUDY USING PROPRANOLOL TO DECREASE GENE EXPRESSION OF STRESS-MEDIATED BETA- ADRENERGIC PATHWAYS IN HEMATOPOIETIC STEM CELL TRANSPLANT RECIPIENTS Version 3.0 Principal Investigator: Jennifer M. Knight, MD Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee, WI 53226 Telephone: 414-955-8908 Fax: 414-955-6285 Email: [email protected] Co-Investigator: J. Douglas Rizzo, MD, MS CIBMTR Froedtert and the Medical College of Wisconsin Clinical Cancer Center 9200 W. Wisconsin Avenue Suite C5500 Milwaukee, WI 53226 Telephone: 414-805-0700 Fax: 414-805-0714 Email: [email protected] Co-Investigator: Parameswaran Hari, MD, MS Froedtert and the Medical College of Wisconsin Clinical Cancer Center 9200 W. Wisconsin Avenue Suite C5500 Milwaukee, WI 53226 Telephone: 414-805-4600 Fax: 414-805-4606 Email: [email protected] Consultant Steve W. Cole, PhD and Statistician: UCLA-David Geffen School of Medicine 10833 LeConte Ave 11-934 Factor Bldg Los Angeles, CA 90095-1678 Telephone: 310-267-4243 Email: [email protected] 1 Propranolol and Gene Expression in HCT Protocol v3.0, January 15, 2016 Sponsor: Medical College of Wisconsin Funding Sponsor: This project has an offer of sponsorship from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. 2 Propranolol and Gene Expression in HCT Protocol v3.0, January 15, 2016 PROTOCOL SYNOPSIS Randomized Controlled Pilot Study Using Propranolol to Decrease Gene Expression of Stress-Mediated Beta-Adrenergic Pathways in Hematopoietic Stem Cell Transplant Recipients Principal Investigator: Jennifer M. Knight, MD Study Design: This is a randomized controlled pilot study designed to evaluate whether the beta-adrenergic antagonist propranolol is effective in decreasing gene expression of stress-mediated beta-adrenergic pathways among a cohort of individuals receiving an autologous hematopoietic stem cell transplant (HCT) for multiple myeloma.
    [Show full text]
  • NO-1886 Decreases Ectopic Lipid Deposition and Protects Pancreatic  Cells in Diet-Induced Diabetic Swine
    399 NO-1886 decreases ectopic lipid deposition and protects pancreatic cells in diet-induced diabetic swine W Yin*,1,2,5, D Liao*,1,2, M Kusunoki6,SXi1, K Tsutsumi3, Z Wang1, X Lian1, T Koike4, J Fan4, Y Yang5 and C Tang5 1Department of Biochemistry and Biotechnology, Nanhua University School of Life Sciences and Technology, Hengyang, Hunan 421001, China 2Department of Pathophysiology, Central South University Xiangya Medical College, Changsha, Hunan, China 3Research and Development, Otsuka Pharmaceutical Factory Inc., Tokushima, Japan 4Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan 5Institute of Cardiovascular Research, Nanhua University Medical School, Hengyang, Hunan 421001, China 6Department of Internal Medicine, Faculty of Medicine, Aichi Medical University, Nagakute-cho, Aichigunte, Aichi 480-11, Japan (Requests for offprints should be addressed to W Yin, Department of Biochemistry and Molecular Biology, Nanhua University School of Life Sciences and Technology, Hengyang, Hunan 421001, China; Email: [email protected]) *W Yin and D Liao contributed equally to this paper Abstract The synthetic compound NO-1886 (ibrolipim) is a lipo- skeletal muscle, liver and pancreas, and also caused pan- protein lipase activator that has been proven to be highly creatic cell damage. However, supplementing 1% NO- effective in lowering plasma triglycerides. Recently, we 1886 (200 mg/kg per day) into the high-fat/high-sucrose found that NO-1886 also reduced plasma free fatty acids diet decreased ectopic lipid deposition, improved insulin and glucose in high-fat/high-sucrose diet-induced dia- resistance, and alleviated the cell damage. These results betic rabbits.
    [Show full text]
  • Biologically Active Substances from Unused Plant Materials
    Biologically active substances from unused plant materials Petra Lovecká1, Anna Macůrková1, Kateřina Demnerová1, Zdeněk Wimmer2 1Department of Biochemistry and Microbiology, 2Departement of Chemistry of Natural Compounds, University of Chemistry and Technology Prague Technická 3, 166 28 Prague 6, Czech Republic Keywords: Magnolia, honokiol, obovatol, biological activities. Presenting author email: [email protected] Natural products, such as plants extract, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug discoveries because of the unmatched availability of chemical diversity. Probably based on historical background we utilize only certain plant parts. In many cases there is not enough of required material or collection damages plant itself. The possible solution we could find in utilization of unused or waste plant parts. This work is focused on analysis of bioactive compounds content in different parts of medicinal plants such as genus Magnolia. Stem bark of these trees are part of Chinese traditional medicine. The collection of stem bark is devastating for the tree. Flowers and leaves from Magnolia tripetala, Magnolia obovata and their hybrids were separately extracted with 80% methanol. Resulting methanolic extract were subsequently fractionated with chloroform under acidic conditions and mixture of chloroform and methanol under basic conditions in term of increasing polarity (Harborne, 1998) into four fractions, neutral, moderately polar, basic and polar extract. Each extract was screened
    [Show full text]
  • Pharmacological Agents Currently in Clinical Trials for Disorders in Neurogastroenterology
    Pharmacological agents currently in clinical trials for disorders in neurogastroenterology Michael Camilleri J Clin Invest. 2013;123(10):4111-4120. https://doi.org/10.1172/JCI70837. Clinical Review Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in understanding the mechanisms of these disorders, through basic and translational research, and in targeting the receptors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients’ symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastroparesis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain. Find the latest version: https://jci.me/70837/pdf Review Pharmacological agents currently in clinical trials for disorders in neurogastroenterology Michael Camilleri Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA. Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in under- standing the mechanisms of these disorders, through basic and translational research, and in targeting the recep- tors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients’ symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastropa- resis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain.
    [Show full text]
  • Therapeutic Class Overview Inhaled Anticholinergics
    Therapeutic Class Overview Inhaled Anticholinergics Therapeutic Class Overview/Summary: The inhaled anticholinergics are a class of bronchodilators primarily used in the management of chronic obstructive pulmonary disease (COPD), a condition characterized by progressive airflow restrictions that are not fully reversible.1-3 Symptoms associated with COPD typically include dyspnea, cough, sputum production, wheezing and chest tightness. Specifically, inhaled anticholinergics work via the inhibition of acetylcholine at parasympathetic sites in bronchial smooth muscle causing bronchodilation. Meaningful increases in lung function can be achieved with the use of inhaled anticholinergics in patients with COPD.1-3 The available single-entity inhaled anticholinergics include aclidinium (Tudorza® Pressair), glycopyrrolate (Seebri Neohaler®), ipratropium (Atrovent®, Atrovent® HFA), tiotropium (Spiriva®, Spiriva Respimat®) and umeclidinium (Incruse Ellipta®) with the combination products including glycopyrrolate/indacaterol (Utibron Neohaler®), umeclidinium/vilanterol (Anoro Ellipta®), tiotropium/olodaterol (Stiolto Respimat®) and ipratropium/albuterol, formulated as either an inhaler (Combivent Respimat®) or nebulizer solution (DuoNeb).4-15 Ipratropium, a short-acting bronchodilator, has a duration of action of six to eight hours and requires administration four times daily. Aclidinium, glycopyrrolate, tiotropium and umeclidinium are considered long-acting bronchodilators. Aclidinium is dosed twice daily, while glycopyrrolate, tiotropium and umeclidinium
    [Show full text]
  • Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids From
    molecules Article Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids from Chilean Rhamnaceae Plants against Fruit-Fly Drosophila melanogaster and the Lepidopteran Crop Pest Cydia pomonella Soledad Quiroz-Carreño 1, Edgar Pastene-Navarrete 1 , Cesar Espinoza-Pinochet 2, Evelyn Muñoz-Núñez 1, Luis Devotto-Moreno 3, Carlos L. Céspedes-Acuña 1 and Julio Alarcón-Enos 1,* 1 Laboratorio de Síntesis y Biotransformación de Productos Naturales, Dpto. Ciencias Básicas, Universidad del Bio-Bio, PC3780000 Chillán, Chile; [email protected] (S.Q.-C.); [email protected] (E.P.-N.); [email protected] (E.M.-N.); [email protected] (C.L.C.-A.) 2 Dpto. Agroindustria, Facultad de Ingeniería Agrícola, Universidad de Concepción, 3780000 Chillán, Chile; [email protected] 3 Instituto de Investigaciones Agropecuarias, INIA Quilamapu, 3780000 Chillán, Chile; [email protected] * Correspondence: [email protected] Academic Editors: Daniel Granato and Petri Kilpeläinen Received: 29 September 2020; Accepted: 27 October 2020; Published: 3 November 2020 Abstract: The Chilean plants Discaria chacaye, Talguenea quinquenervia (Rhamnaceae), Peumus boldus (Monimiaceae), and Cryptocarya alba (Lauraceae) were evaluated against Codling moth: Cydia pomonella L. (Lepidoptera: Tortricidae) and fruit fly Drosophila melanogaster (Diptera: Drosophilidae), which is one of the most widespread and destructive primary pests of Prunus (plums, cherries, peaches, nectarines, apricots, almonds), pear, walnuts, and chestnuts, among other. Four benzylisoquinoline alkaloids (coclaurine, laurolitsine, boldine, and pukateine) were isolated from the above mentioned plant species and evaluated regarding their insecticidal activity against the codling moth and fruit fly. The results showed that these alkaloids possess acute and chronic insecticidal effects. The most relevant effect was observed at 10 µg/mL against D.
    [Show full text]