Intro Key Concepts Med Chem1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distance-Based Protein Folding Powered by Deep Learning Jinbo Xu Toyota Technological Institute at Chicago 6045 S Kenwood, IL, 60637, USA [email protected]
Distance-based Protein Folding Powered by Deep Learning Jinbo Xu Toyota Technological Institute at Chicago 6045 S Kenwood, IL, 60637, USA [email protected] Contact-assisted protein folding has made very good progress, but two challenges remain. One is accurate contact prediction for proteins lack of many sequence homologs and the other is that time-consuming folding simulation is often needed to predict good 3D models from predicted contacts. We show that protein distance matrix can be predicted well by deep learning and then directly used to construct 3D models without folding simulation at all. Using distance geometry to construct 3D models from our predicted distance matrices, we successfully folded 21 of the 37 CASP12 hard targets with a median family size of 58 effective sequence homologs within 4 hours on a Linux computer of 20 CPUs. In contrast, contacts predicted by direct coupling analysis (DCA) cannot fold any of them in the absence of folding simulation and the best CASP12 group folded 11 of them by integrating predicted contacts into complex, fragment- based folding simulation. The rigorous experimental validation on 15 CASP13 targets show that among the 3 hardest targets of new fold our distance-based folding servers successfully folded 2 large ones with <150 sequence homologs while the other servers failed on all three, and that our ab initio folding server also predicted the best, high-quality 3D model for a large homology modeling target. Further experimental validation in CAMEO shows that our ab initio folding server predicted correct fold for a membrane protein of new fold with 200 residues and 229 sequence homologs while all the other servers failed. -
Comparative Protein Structure Modeling Using MODELLER 5.6.32
Comparative Protein Structure Modeling UNIT 5.6 Using MODELLER Benjamin Webb1 and Andrej Sali1 1University of California at San Francisco, San Francisco, California ABSTRACT Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Curr. Protoc. Bioinform. 47:5.6.1-5.6.32. C 2014 by John Wiley & Sons, Inc. Keywords: Modeller r protein structure r comparative modeling r structure prediction r protein fold INTRODUCTION Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by an accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling often provides a useful 3-D model for a protein that is related to at least one known protein structure (Marti-Renom et al., 2000; Fiser, 2004; Misura and Baker, 2005; Petrey and Honig, 2005; Misura et al., 2006). -
"Protein Structure and Function Prediction
Protein Structure and Function UNIT 5.8 Prediction Using I-TASSER Jianyi Yang1,2 and Yang Zhang1,3 1Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 2School of Mathematical Sciences, Nankai University, Tianjin, People’s Republic of China 3Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSERfirst generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simula- tions followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely avail- able as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. C 2015 by John Wiley & Sons, Inc. Keywords: protein structure prediction r protein function annotation r I- TASSER r threading How to cite this article: Yang J., and Zhang Y., 2015. Protein structure and function prediction using I-TASSER. Curr. Protoc. Bioinform. 52:5.8.1-5.8.15. doi: 10.1002/0471250953.bi0508s52 INTRODUCTION Proteins are the ‘workhorse’ molecules of life that participate in essentially every cellular process. -
Comparative Protein Structure Modeling Using Modeller ABSTRACT
• UNIT 5.6 Comparative Protein Structure Modeling Using Modeller ABSTRACT Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Keyword Group: Modeller ● ModBase ● protein structure ● comparative modeling ● structure prediction ● protein fold Subject Group: Structural Analysis of Biomolecules ● Modeling Structure and Biomolecular Engineering ● Bioinformatics ● Molecular Modeling Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by an accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling often provides a useful 3-D model for a protein that is related to at least one known protein structure (Marti-Renom et al., 2000; Fiser, 2004; Misura and Baker, 2005; Petrey and Honig, 2005; Misura et al., 2006). -
CASP13 Abstracts.Pdf
CRITICAL ASSESSMENT OF TECHNIQUES FOR PROTEIN STRUCTURE PREDICTION 13 Thirteenth meeting Riviera Maya, Mexico DECEMBER 1-4, 2018 1 TABLE OF CONTENTS 3DCNN (TS) .......................................................................................................................................................................... 9 PROTEIN MODEL QUALITY ASSESSMENT USING 3D ORIENTED CONVOLUTIONAL NEURAL NETWORK ................................................................ 9 3DCNN (REFINEMENT) ....................................................................................................................................................... 10 REFINEMENT OF PROTEIN MODELS WITH ADDITIONAL CROSS-LINKING INFORMATION USING THE GAUSSIAN NETWORK AND GRADIENT DESCENT .. 10 A7D ................................................................................................................................................................................... 11 DE NOVO STRUCTURE PREDICTION WITH DEEP-LEARNING BASED SCORING.............................................................................................. 11 AIR ..................................................................................................................................................................................... 13 AIR: AN ARTIFICIAL INTELLIGENCE-BASED PROTOCOL FOR PROTEIN STRUCTURE REFINEMENT USING MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION .......................................................................................................................................................................... -
Protein Structure Prediction Bioinformatics Pdf
Protein structure prediction bioinformatics pdf Continue Go to the main content In this article lead section to be expanded. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (February 2017) Composite amino acids can be analyzed to predict the secondary, tertiary and quay structure of the protein. Predicting the structure of a protein is the output of the three-dimensional structure of a protein from its amino acid sequence, i.e. predicting its folding and its secondary and tertiary structure from its primary structure. Predicting structure is fundamentally different from the reverse problem of protein design. Protein structure prediction is one of the most important goals to ride bioinformatics and theoretical chemistry; this is very important in medicine (e.g. drug development) and biotechnology (e.g. in the development of new enzymes). Every two years, the effectiveness of modern methods is assessed in the CASP (Critical Assessment of Protein Structure Forecasting Methods). A continuous assessment of the web servers predicting the structure of the protein is carried out by the community project CAMEO3D. Protein structure and terminology Protein chains of amino acids combined with peptide bonds. Many conformations of this chain are possible because of the rotation of the chain around each atom C. It is these conformal changes responsible for differences in the three-dimensional structure of proteins. Each amino acid in the polar chain, i.e. it separates positive and negative charged regions with a free carbonyl group that can act as a host of hydrogen bonds and the NH group, which can act as a donor to hydrogen bonds. -
Protein Structure Prediction Rachel
From: Nurul Affiah Binte Sahrin Sent: Tuesday, November 7, 2017 9:07 AM To: Ting Ai Hua Cc: Rachel Seah Mei Hui Subject: FW: RE: FW: Re: Fw: 巜物理学报》软物质专题英文版 Dear Ai Hua, Please kindly refer to the email below. I will come down later and explain to u in detailed Name of Journal: 物理学报 Article title: 水的奇异性质与液液相变 December 11, 2017 9:5 IJMPB S021797921840009X page 1 Thanks & Regards, Affiah Sahrin(Ms) Journal Publishing Administrator World Scientific Publishing Company 5 Toh Tuck Link Singapore 596224 From: Rachel Seah Mei Hui Monday, 6 November, 2017 3:46 PM International Journal of ModernSent: Physics B Vol. 32 (2018) 1840009 (17 pages)To: Nurul Affiah Binte Sahrin <[email protected]> c World Scientific PublishingSubject: Company FW: RE: FW: Re: Fw: 巜物理学报》软物质专题英文版 DOI: 10.1142/S021797921840009X Dear Affiah, Could we try implementing the new layout that you suggested, but add to the back of the citation: Please cite the original DOI. Also, put in brackets the Chinese name of the journal 物理学报 and the Chinese title of the article? Do let me know if you need help with that. Let’s do a sample layout before we typeset all the papers. Thanks Best regards, Protein structure prediction Rachel Haiyou发件人: Deng Rachel∗, YaSeah Jia Meiy and Hui Yang Zhangz;x 发送时间: 2017-11-06∗ 10:39:05 收件人: StevenCollege Shi Hong of Science, Bing - EXT 抄送:Huazhong Agricultural University, 主题:Wuhan RE: FW: 430070, Re: Fw: P.巜物理学报》软物质专题英文版 R. China yCollegeDear Steven, of Physical Science and Technology, Central China Normal University, I do agreeWuhan with their 430079, recommendation P. -
Comparative Modeling of Drug Target Proteins
This article was published in the Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Webb B., Eswar N., Fan H., Khuri N., Pieper U., Dong G.Q. and Sali A. (2014) Comparative Modeling of Drug Target Proteins. In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Waltham, MA: Elsevier. 29-Sep-14 doi: 10.1016/B978-0-12- 409547-2.11133-3. © 2014 Elsevier Inc. All rights reserved. Author's personal copy ☆ Comparative Modeling of Drug Target Proteins B Webb, N Eswar, H Fan, N Khuri, U Pieper, GQ Dong, and A Sali, University of California at San Francisco, San Francisco, CA, USA ã 2014 Elsevier Inc. All rights reserved. Introduction 2 Structure-Based Drug Discovery 2 The Sequence–Structure Gap 2 Structure Prediction Addresses the Sequence–Structure