CASP13 Abstracts.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

CASP13 Abstracts.Pdf CRITICAL ASSESSMENT OF TECHNIQUES FOR PROTEIN STRUCTURE PREDICTION 13 Thirteenth meeting Riviera Maya, Mexico DECEMBER 1-4, 2018 1 TABLE OF CONTENTS 3DCNN (TS) .......................................................................................................................................................................... 9 PROTEIN MODEL QUALITY ASSESSMENT USING 3D ORIENTED CONVOLUTIONAL NEURAL NETWORK ................................................................ 9 3DCNN (REFINEMENT) ....................................................................................................................................................... 10 REFINEMENT OF PROTEIN MODELS WITH ADDITIONAL CROSS-LINKING INFORMATION USING THE GAUSSIAN NETWORK AND GRADIENT DESCENT .. 10 A7D ................................................................................................................................................................................... 11 DE NOVO STRUCTURE PREDICTION WITH DEEP-LEARNING BASED SCORING.............................................................................................. 11 AIR ..................................................................................................................................................................................... 13 AIR: AN ARTIFICIAL INTELLIGENCE-BASED PROTOCOL FOR PROTEIN STRUCTURE REFINEMENT USING MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ........................................................................................................................................................................... 13 ALPHACONTACT ................................................................................................................................................................. 15 PROTEIN CONTACT PREDICTION WITH MULTI-SCALE RESIDUAL CONVOLUTIONAL NEURAL NETWORK .......................................................... 15 AP_1 .................................................................................................................................................................................. 17 AP_1 STRUCTURE PREDICTION IN CASP13 ..................................................................................................................................... 17 AWSEM-SUITE ................................................................................................................................................................... 18 TEMPLATE-GUIDED & COEVOLUTION-RESTRAINED PROTEIN STRUCTURE PREDICTION USING OPTIMIZED FOLDING LANDSCAPE FORCE FIELDS ... 18 BAKER_AUTOREFINE .......................................................................................................................................................... 20 ADDRESSING MEDIUM-RESOLUTION REFINEMENT CHALLENGES USING ROSETTA IN CASP13 ..................................................................... 20 BAKER-ROSETTASERVER .................................................................................................................................................... 22 IMPROVING ROBETTA BY A BROAD USAGE OF SEQUENCE DATA AND COEVOLUTIONARY RESTRAINTS .............................................................. 22 BATES_BMM ...................................................................................................................................................................... 25 PROTEIN MODEL CONSTRUCTION AND DOCKING USING PARTICLE SWARM OPTIMIZATION ........................................................................... 25 BCLMEILERGROUP ............................................................................................................................................................. 27 BCL::FOLD DE-NOVO PROTEIN STRUCTURE PREDICTION THROUGH ASSEMBLY OF SECONDARY STRUCTURE ELEMENTS FOLLOWED BY MOLECULAR DYNAMICS REFINEMENT ............................................................................................................................................................... 27 BHATTACHARYA ................................................................................................................................................................. 29 PROTEIN STRUCTURE PREDICTION AND REFINEMENT BY BHATTACHARYA HUMAN GROUP IN CASP13 .......................................................... 29 BHATTACHARYA-CLUSTQ .................................................................................................................................................... 31 CLUSTQ: MULTI-MODEL QA USING SUPERPOSITION-FREE WEIGHTED INTERNAL DISTANCE COMPARISONS .................................................... 31 BHATTACHARYA-SERVER .................................................................................................................................................... 32 REFINED: PROTEIN STRUCTURE REFINEMENT USING MACHINE LEARNING GUIDED RESTRAINED RELAXATION .................................................. 32 BHATTACHARYA-SINGQ, BHATTACHARYA-SERVER .............................................................................................................. 33 SCORED: ESTIMATING GLOBAL DISTANCE TEST USING DEEP DISCRIMINATIVE BINARY CLASSIFIER ENSEMBLE .................................................. 33 BONIECKI_PRED ................................................................................................................................................................. 35 PROTEIN STRUCTURE REFINEMENT USING INTERMEDIATE RESOLUTION, COARSE-GRAINED MODEL, KNOWLEDGE-BASED ENERGY FUNCTION(S), MONTE CARLO METHODS, SUPPORTED BY MQAP CONSTRAINTS ......................................................................................................... 35 CAO-SERVER (TS) ............................................................................................................................................................... 36 COLLABORATIVE DE NOVO PROTEIN STRUCTURE PREDICTION USING STEPWISE FRAGMENT SAMPLING WITH HELP OF CONTACT PREDICTION AND MODEL SELECTION BASED ON DEEP LEARNING TECHNIQUES ................................................................................................................. 36 CARBONELAB (CAPRI) ........................................................................................................................................................ 38 2 COMBINING EVOLUTION- AND GEOMETRY-DRIVEN INTERFACE PREDICTIONS WITH KNOWLEDGE-BASED DISTANCE-DEPENDENT POTENTIALS FOR TEMPLATE-FREE MODELING IN CAPRI ROUND 46 ............................................................................................................................. 38 CLUSPRO (CAPRI) ............................................................................................................................................................... 40 HYBRID CLUSPRO SERVER IN 2018 CASP/CAPRI ROUNDS ................................................................................................................ 40 CPCLAB (RR)....................................................................................................................................................................... 42 TOPCONTACT: PROTEIN CONTACT META-PREDICTIONS THROUGH MACHINE LEARNING .............................................................................. 42 CPCLAB (TS) ....................................................................................................................................................................... 43 TOPSCORE: USING DEEP NEURAL NETWORKS AND LARGE DIVERSE DATASETS FOR ACCURATE PROTEIN MODEL QUALITY ASSESSMENT .................. 43 D-HAVEN ........................................................................................................................................................................... 45 TEMPLATE-BASED PROTEIN STRUCTURE PREDICTION BASED ON PROFILE-PROFILE ALIGNMENTS ................................................................ 45 DC_REFINE ......................................................................................................................................................................... 47 MODYCHOPS - MOLECULAR DYNAMICS COUPLED HOMOLOGUE PROTEIN STRUCTURE REFINEMENT PROTOCOL ......................................... 47 DELCLAB ............................................................................................................................................................................ 48 COMBINING ORTHODOX SEQUENCE HOMOLOGY ANALYSIS WITH SPECTRAL ANALYSIS FOR PROTEIN 3D STRUCTURE PREDICTION ........................ 48 DESTINI .............................................................................................................................................................................. 50 A DEEP-LEARNING APPROACH TO PROTEIN STRUCTURE PREDICTION ...................................................................................................... 50 DISTILL ............................................................................................................................................................................... 52 DISTILL FOR CASP13 .................................................................................................................................................................. 52 DL-HAVEN .......................................................................................................................................................................... 54 CONTACT PREDICTION AND DE NOVO PROTEIN STRUCTURE
Recommended publications
  • Itcontents 9..22
    INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY Volume F CRYSTALLOGRAPHY OF BIOLOGICAL MACROMOLECULES Edited by MICHAEL G. ROSSMANN AND EDDY ARNOLD Advisors and Advisory Board Advisors: J. Drenth, A. Liljas. Advisory Board: U. W. Arndt, E. N. Baker, S. C. Harrison, W. G. J. Hol, K. C. Holmes, L. N. Johnson, H. M. Berman, T. L. Blundell, M. Bolognesi, A. T. Brunger, C. E. Bugg, K. K. Kannan, S.-H. Kim, A. Klug, D. Moras, R. J. Read, R. Chandrasekaran, P. M. Colman, D. R. Davies, J. Deisenhofer, T. J. Richmond, G. E. Schulz, P. B. Sigler,² D. I. Stuart, T. Tsukihara, R. E. Dickerson, G. G. Dodson, H. Eklund, R. GiegeÂ,J.P.Glusker, M. Vijayan, A. Yonath. Contributing authors E. E. Abola: The Department of Molecular Biology, The Scripps Research W. Chiu: Verna and Marrs McLean Department of Biochemistry and Molecular Institute, La Jolla, CA 92037, USA. [24.1] Biology, Baylor College of Medicine, Houston, Texas 77030, USA. [19.2] P. D. Adams: The Howard Hughes Medical Institute and Department of Molecular J. C. Cole: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA. CB2 1EZ, England. [22.4] [18.2, 25.2.3] M. L. Connolly: 1259 El Camino Real #184, Menlo Park, CA 94025, USA. F. H. Allen: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge [22.1.2] CB2 1EZ, England. [22.4, 24.3] K. D. Cowtan: Department of Chemistry, University of York, York YO1 5DD, U. W. Arndt: Laboratory of Molecular Biology, Medical Research Council, Hills England.
    [Show full text]
  • Homology Modeling and Analysis of Structure Predictions of the Bovine Rhinitis B Virus RNA Dependent RNA Polymerase (Rdrp)
    Int. J. Mol. Sci. 2012, 13, 8998-9013; doi:10.3390/ijms13078998 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Homology Modeling and Analysis of Structure Predictions of the Bovine Rhinitis B Virus RNA Dependent RNA Polymerase (RdRp) Devendra K. Rai and Elizabeth Rieder * Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-631-323-3177; Fax: +1-631-323-3006. Received: 3 May 2012; in revised form: 3 July 2012 / Accepted: 11 July 2012 / Published: 19 July 2012 Abstract: Bovine Rhinitis B Virus (BRBV) is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV) with a ~43% identical polyprotein sequence and as much as 67% identical sequence for the RNA dependent RNA polymerase (RdRp), which is also known as 3D polymerase (3Dpol). In the present study we carried out phylogenetic analysis, structure based sequence alignment and prediction of three-dimensional structure of BRBV 3Dpol using a combination of different computational tools. Model structures of BRBV 3Dpol were verified for their stereochemical quality and accuracy. The BRBV 3Dpol structure predicted by SWISS-MODEL exhibited highest scores in terms of stereochemical quality and accuracy, which were in the range of 2Å resolution crystal structures. The active site, nucleic acid binding site and overall structure were observed to be in agreement with the crystal structure of unliganded as well as template/primer (T/P), nucleotide tri-phosphate (NTP) and pyrophosphate (PPi) bound FMDV 3Dpol (PDB, 1U09 and 2E9Z).
    [Show full text]
  • Arxiv:1911.09811V1 [Physics.Bio-Ph] 22 Nov 2019 Help to Associate a Folded Structure to a Protein Sequence
    Machine learning for protein folding and dynamics Frank Noé Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany Gianni De Fabritiis Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain, and Institucio Catalana de Recerca i Estudis Avanats (ICREA), Passeig Lluis Companys 23, Barcelona 08010, Spain Cecilia Clementi Center for Theoretical Biological Physics, and Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States Abstract Many aspects of the study of protein folding and dynamics have been affected by the recent advances in machine learning. Methods for the prediction of protein structures from their sequences are now heavily based on machine learning tools. The way simulations are performed to explore the energy landscape of protein systems is also changing as force-fields are started to be designed by means of machine learning methods. These methods are also used to extract the essential information from large simulation datasets and to enhance the sampling of rare events such as folding/unfolding transitions. While significant challenges still need to be tackled, we expect these methods to play an important role on the study of protein folding and dynamics in the near future. We discuss here the recent advances on all these fronts and the questions that need to be addressed for machine learning approaches to become mainstream in protein simulation. Introduction During the last couple of decades advances in artificial intelligence and machine learning have revolu- tionized many application areas such as image recognition and language translation.
    [Show full text]
  • Assessment of the Model Refinement Category in CASP12 Ladislav
    Assessment of the model refinement category in CASP12 1, * 1, * 1, * Ladislav Hovan, Vladimiras Oleinikovas, Havva Yalinca, Andriy 2 1 1, 3 Kryshtafovych, Giorgio Saladino, and Francesco Luigi Gervasio 1Department of Chemistry, University College London, London WC1E 6BT, United Kingdom 2Genome Center, University of California, Davis, California 95616, USA 3Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom. ∗ Contributed equally. Correspondence: Francesco Luigi Gervasio, Department of Chemistry, University College London, London WC1E 6BT, United Kingdom. Email:[email protected] ABSTRACT We here report on the assessment of the model refinement predictions submitted to the 12th Experiment on the Critical Assessment of Protein Structure Prediction (CASP12). This is the fifth refinement experiment since CASP8 (2008) and, as with the previous experiments, the predictors were invited to refine selected server models received in the regular (non- refinement) stage of the CASP experiment. We assessed the submitted models using a combination of standard CASP measures. The coefficients for the linear combination of Z-scores (the CASP12 score) have been obtained by a machine learning algorithm trained on the results of visual inspection. We identified 8 groups that improve both the backbone conformation and the side chain positioning for the majority of targets. Albeit the top methods adopted distinctively different approaches, their overall performance was almost indistinguishable, with each of them excelling in different scores or target subsets. What is more, there were a few novel approaches that, while doing worse than average in most cases, provided the best refinements for a few targets, showing significant latitude for further innovation in the field.
    [Show full text]
  • Protein Contact Map Prediction Using Multiple Sequence Alignment
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.12.443740; this version posted May 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Protein contact map prediction using multiple sequence alignment dropout and consistency learning for sequences with less homologs Abstract The prediction of protein contact map needs enough normalized number of effective sequence (Nf) in multiple sequence alignment (MSA). When Nf is small, the predicted contact maps are often not satisfactory. To solve this problem, we randomly selected a small part of sequence homologs for proteins with large Nf to generate MSAs with small Nf. From these MSAs, input features were generated and were passed through a consistency learning network, aiming to get the same results when using the features generated from the MSA with large Nf. The results showed that this method effectively improves the prediction accuracy of protein contact maps with small Nf. 1. Introduction De novo protein structure prediction has been a long-standing challenge in computational biology. Since 2015, protein contact map assisted protein structure prediction has shown its great advantage and thus has been implemented in almost all cutting-edge de novo protein structure prediction tools, such as RaptorX1, I-TASSER2, AlphaFold13, trRosetta4 and etc5-8. Protein contact map is predicted by using features extracted from multiple sequences alignment (MSA). Such features include mutual information and direct-coupling analysis (DCA). Mutual information was often used in early stage studies to predict co-evolving residues pairs.9-11 However, mutual information includes both direct coupling pairs and indirect coupling pairs, while the latter are bioRxiv preprint doi: https://doi.org/10.1101/2021.05.12.443740; this version posted May 13, 2021.
    [Show full text]
  • Wefold: a Coopetition for Protein Structure Prediction George A
    proteins STRUCTURE O FUNCTION O BIOINFORMATICS WeFold: A coopetition for protein structure prediction George A. Khoury,1 Adam Liwo,2 Firas Khatib,3,15 Hongyi Zhou,4 Gaurav Chopra,5,6 Jaume Bacardit,7 Leandro O. Bortot,8 Rodrigo A. Faccioli,9 Xin Deng,10 Yi He,11 Pawel Krupa,2,11 Jilong Li,10 Magdalena A. Mozolewska,2,11 Adam K. Sieradzan,2 James Smadbeck,1 Tomasz Wirecki,2,11 Seth Cooper,12 Jeff Flatten,12 Kefan Xu,12 David Baker,3 Jianlin Cheng,10 Alexandre C. B. Delbem,9 Christodoulos A. Floudas,1 Chen Keasar,13 Michael Levitt,5 Zoran Popovic´,12 Harold A. Scheraga,11 Jeffrey Skolnick,4 Silvia N. Crivelli ,14* and Foldit Players 1 Department of Chemical and Biological Engineering, Princeton University, Princeton 2 Faculty of Chemistry, University of Gdansk, Gdansk, Poland 3 Department of Biochemistry, University of Washington, Seattle 4 Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta 5 Department of Structural Biology, School of Medicine, Stanford University, Palo Alto 6 Diabetes Center, School of Medicine, University of California San Francisco (UCSF), San Francisco 7 School of Computing Science, Newcastle University, Newcastle, United Kingdom 8 Laboratory of Biological Physics, Faculty of Pharmaceutical Sciences at Ribeir~ao Preto, University of S~ao Paulo, S~ao Paulo, Brazil 9 Institute of Mathematical and Computer Sciences, University of S~ao Paulo, S~ao Paulo, Brazil 10 Department of Computer Science, University of Missouri, Columbia 11 Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca 12 Department of Computer Science and Engineering, Center for Game Science, University of Washington, Seattle 13 Departments of Computer Science and Life Sciences, Ben Gurion University of the Negev, Israel 14 Department of Computer Science, University of California, Davis, Davis 15 Department of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth ABSTRACT The protein structure prediction problem continues to elude scientists.
    [Show full text]
  • Computational Protein Structure Prediction Using Deep Learning
    COMPUTATIONAL PROTEIN STRUCTURE PREDICTION USING DEEP LEARNING _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by ZHAOYU LI Professor Yi Shang, Dissertation Advisor May 2020 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled COMPUTATIONAL PROTEIN STRUCTURE PREDICTION USING DEEP LEARNING presented by Zhaoyu Li, a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Yi Shang Dr. Dong Xu Dr. Jianlin Cheng Dr. Ioan Kosztin DEDICATION To my wife Xian, my parents, and my son Ethan. ACKNOWLEDGEMENTS I would like to take the opportunity to thank the following people who have supported me through my PhD program. Without the support of them, this thesis would not have been possible. First, I would like to thank my advisor, Dr. Yi Shang. He has been my advisor since my master’s study. He opened the door of research for me, showed me instructions, guided me, supported me, encouraged me, and inspired me whenever I need help. It is a great pleasure to work with Dr. Shang together. I would also like to thank my committee members, Dr. Dong Xu, Dr. Jianlin Cheng, and Dr. Ioan Kosztin. They have been giving me constructive suggestions and advices to my dissertation and helping me solve problems in my research. Their support is essential, and I appreciate their time and efforts very much. I would also like to thank other lab mates.
    [Show full text]
  • Dnpro: a Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations Xiao Zhou and Jianlin Cheng*
    DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations Xiao Zhou and Jianlin Cheng* Computer Science Department University of Missouri Columbia, MO 65211, USA *Corresponding author: [email protected] a function from the data to map the input information Abstract—A single amino acid mutation can have a significant regarding a protein and its mutation to the energy change impact on the stability of protein structure. Thus, the prediction of without the need of approximating the physics underlying protein stability change induced by single site mutations is critical mutation stability. This data-driven formulation of the and useful for studying protein function and structure. Here, we problem makes it possible to apply a large array of machine presented a new deep learning network with the dropout technique learning methods to tackle the problem. Therefore, a wide for predicting protein stability changes upon single amino acid range of machine learning methods has been applied to the substitution. While using only protein sequence as input, the overall same problem. E Capriotti et al., 2004 [2] presented a neural prediction accuracy of the method on a standard benchmark is >85%, network for predicting protein thermodynamic stability with which is higher than existing sequence-based methods and is respect to native structure; J Cheng et al., 2006 [1] developed comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results MUpro, a support vector machine with radial basis kernel to demonstrate that deep learning is a promising technique for protein improve mutation stability prediction; iPTREE based on C4.5 stability prediction.
    [Show full text]
  • CASP)-Round V
    PROTEINS: Structure, Function, and Genetics 53:334–339 (2003) Critical Assessment of Methods of Protein Structure Prediction (CASP)-Round V John Moult,1 Krzysztof Fidelis,2 Adam Zemla,2 and Tim Hubbard3 1Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 2Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 3Sanger Institute, Wellcome Trust Genome Campus, Cambridgeshire, United Kingdom ABSTRACT This article provides an introduc- The role and importance of automated servers in the tion to the special issue of the journal Proteins structure prediction field continue to grow. Another main dedicated to the fifth CASP experiment to assess the section of the issue deals with this topic. The first of these state of the art in protein structure prediction. The articles describes the CAFASP3 experiment. The goal of article describes the conduct, the categories of pre- CAFASP is to assess the state of the art in automatic diction, and the evaluation and assessment proce- methods of structure prediction.16 Whereas CASP allows dures of the experiment. A brief summary of progress any combination of computational and human methods, over the five CASP experiments is provided. Related CAFASP captures predictions directly from fully auto- developments in the field are also described. Proteins matic servers. CAFASP makes use of the CASP target 2003;53:334–339. © 2003 Wiley-Liss, Inc. distribution and prediction collection infrastructure, but is otherwise independent. The results of the CAFASP3 experi- Key words: protein structure prediction; communi- ment were also evaluated by the CASP assessors, provid- tywide experiment; CASP ing a comparison of fully automatic and hybrid methods.
    [Show full text]
  • 11: Catchup II Machine Learning and Real-World Data (MLRD)
    11: Catchup II Machine Learning and Real-world Data (MLRD) Ann Copestake Lent 2019 Last session: HMM in a biological application In the last session, we used an HMM as a way of approximating some aspects of protein structure. Today: catchup session 2. Very brief sketch of protein structure determination: including gamification and Monte Carlo methods (and a little about AlphaFold). Related ideas are used in many very different machine learning applications . What happens in catchup sessions? Lecture and demonstrated session scheduled as in normal session. Lecture material is non-examinable. Time for you to catch-up in demonstrated sessions or attempt some starred ticks. Demonstrators help as usual. Protein structure Levels of structure: Primary structure: sequence of amino acid residues. Secondary structure: highly regular substructures, especially α-helix, β-sheet. Tertiary structure: full 3-D structure. In the cell: an amino acid sequence (as encoded by DNA) is produced and folds itself into a protein. Secondary and tertiary structure crucial for protein to operate correctly. Some diseases thought to be caused by problems in protein folding. Alpha helix Dcrjsr - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9131613 Bovine rhodopsin By Andrei Lomize - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=34114850 found in the rods in the retina of the eye a bundle of seven helices crossing the membrane (membrane surfaces marked by horizontal lines) supports a molecule of retinal, which changes structure when exposed to light, also changing the protein structure, initiating the visual pathway 7-bladed propeller fold (found naturally) http://beautifulproteins.blogspot.co.uk/ Peptide self-assembly mimic scaffold (an engineered protein) http://beautifulproteins.blogspot.co.uk/ Protein folding Anfinsen’s hypothesis: the structure a protein forms in nature is the global minimum of the free energy and is determined by the animo acid sequence.
    [Show full text]
  • Benchmarking the POEM@HOME Network for Protein Structure
    3rd International Workshop on Science Gateways for Life Sciences (IWSG 2011), 8-10 JUNE 2011 Benchmarking the POEM@HOME Network for Protein Structure Prediction Timo Strunk1, Priya Anand1, Martin Brieg2, Moritz Wolf1, Konstantin Klenin2, Irene Meliciani1, Frank Tristram1, Ivan Kondov2 and Wolfgang Wenzel1,* 1Institute of Nanotechnology, Karlsruhe Institute of Technology, PO Box 3640, 76021 Karlsruhe, Germany. 2Steinbuch Centre for Computing, Karlsruhe Institute of Technology, PO Box 3640, 76021 Karlsruhe, Germany ABSTRACT forcefields (Fitzgerald, et al., 2007). Knowledge-based potentials, in contrast, perform very well in differentiating native from non- Motivation: Structure based methods for drug design offer great native protein structures (Wang, et al., 2004; Zhou, et al., 2007; potential for in-silico discovery of novel drugs but require accurate Zhou, et al., 2006) and have recently made inroads into the area of models of the target protein. Because many proteins, in particular protein folding. Physics-based models retain the appeal of high transmembrane proteins, are difficult to characterize experimentally, transferability, but the present lack of truly transferable potentials methods of protein structure prediction are required to close the gap calls for the development of novel forcefields for protein structure prediction and modeling (Schug, et al., 2006; Verma, et al., 2007; between sequence and structure information. Established methods Verma and Wenzel, 2009). for protein structure prediction work well only for targets of high We have earlier reported the rational development of transferable homology to known proteins, while biophysics based simulation free energy forcefields PFF01/02 (Schug, et al., 2005; Verma and methods are restricted to small systems and require enormous Wenzel, 2009) that correctly predict the native conformation of computational resources.
    [Show full text]
  • Estimation of Uncertainties in the Global Distance Test (GDT TS) for CASP Models
    RESEARCH ARTICLE Estimation of Uncertainties in the Global Distance Test (GDT_TS) for CASP Models Wenlin Li2, R. Dustin Schaeffer1, Zbyszek Otwinowski2, Nick V. Grishin1,2* 1 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390–9050, United States of America, 2 Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390–9050, United States of America * [email protected] Abstract a11111 The Critical Assessment of techniques for protein Structure Prediction (or CASP) is a com- munity-wide blind test experiment to reveal the best accomplishments of structure model- ing. Assessors have been using the Global Distance Test (GDT_TS) measure to quantify prediction performance since CASP3 in 1998. However, identifying significant score differ- ences between close models is difficult because of the lack of uncertainty estimations for OPEN ACCESS this measure. Here, we utilized the atomic fluctuations caused by structure flexibility to esti- Citation: Li W, Schaeffer RD, Otwinowski Z, Grishin mate the uncertainty of GDT_TS scores. Structures determined by nuclear magnetic reso- NV (2016) Estimation of Uncertainties in the Global nance are deposited as ensembles of alternative conformers that reflect the structural Distance Test (GDT_TS) for CASP Models. PLoS flexibility, whereas standard X-ray refinement produces the static structure averaged over ONE 11(5): e0154786. doi:10.1371/journal. time and space for the dynamic ensembles. To recapitulate the structural heterogeneous pone.0154786 ensemble in the crystal lattice, we performed time-averaged refinement for X-ray datasets Editor: Yang Zhang, University of Michigan, UNITED to generate structural ensembles for our GDT_TS uncertainty analysis.
    [Show full text]