CASP13 Abstracts.Pdf

CASP13 Abstracts.Pdf

CRITICAL ASSESSMENT OF TECHNIQUES FOR PROTEIN STRUCTURE PREDICTION 13 Thirteenth meeting Riviera Maya, Mexico DECEMBER 1-4, 2018 1 TABLE OF CONTENTS 3DCNN (TS) .......................................................................................................................................................................... 9 PROTEIN MODEL QUALITY ASSESSMENT USING 3D ORIENTED CONVOLUTIONAL NEURAL NETWORK ................................................................ 9 3DCNN (REFINEMENT) ....................................................................................................................................................... 10 REFINEMENT OF PROTEIN MODELS WITH ADDITIONAL CROSS-LINKING INFORMATION USING THE GAUSSIAN NETWORK AND GRADIENT DESCENT .. 10 A7D ................................................................................................................................................................................... 11 DE NOVO STRUCTURE PREDICTION WITH DEEP-LEARNING BASED SCORING.............................................................................................. 11 AIR ..................................................................................................................................................................................... 13 AIR: AN ARTIFICIAL INTELLIGENCE-BASED PROTOCOL FOR PROTEIN STRUCTURE REFINEMENT USING MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ........................................................................................................................................................................... 13 ALPHACONTACT ................................................................................................................................................................. 15 PROTEIN CONTACT PREDICTION WITH MULTI-SCALE RESIDUAL CONVOLUTIONAL NEURAL NETWORK .......................................................... 15 AP_1 .................................................................................................................................................................................. 17 AP_1 STRUCTURE PREDICTION IN CASP13 ..................................................................................................................................... 17 AWSEM-SUITE ................................................................................................................................................................... 18 TEMPLATE-GUIDED & COEVOLUTION-RESTRAINED PROTEIN STRUCTURE PREDICTION USING OPTIMIZED FOLDING LANDSCAPE FORCE FIELDS ... 18 BAKER_AUTOREFINE .......................................................................................................................................................... 20 ADDRESSING MEDIUM-RESOLUTION REFINEMENT CHALLENGES USING ROSETTA IN CASP13 ..................................................................... 20 BAKER-ROSETTASERVER .................................................................................................................................................... 22 IMPROVING ROBETTA BY A BROAD USAGE OF SEQUENCE DATA AND COEVOLUTIONARY RESTRAINTS .............................................................. 22 BATES_BMM ...................................................................................................................................................................... 25 PROTEIN MODEL CONSTRUCTION AND DOCKING USING PARTICLE SWARM OPTIMIZATION ........................................................................... 25 BCLMEILERGROUP ............................................................................................................................................................. 27 BCL::FOLD DE-NOVO PROTEIN STRUCTURE PREDICTION THROUGH ASSEMBLY OF SECONDARY STRUCTURE ELEMENTS FOLLOWED BY MOLECULAR DYNAMICS REFINEMENT ............................................................................................................................................................... 27 BHATTACHARYA ................................................................................................................................................................. 29 PROTEIN STRUCTURE PREDICTION AND REFINEMENT BY BHATTACHARYA HUMAN GROUP IN CASP13 .......................................................... 29 BHATTACHARYA-CLUSTQ .................................................................................................................................................... 31 CLUSTQ: MULTI-MODEL QA USING SUPERPOSITION-FREE WEIGHTED INTERNAL DISTANCE COMPARISONS .................................................... 31 BHATTACHARYA-SERVER .................................................................................................................................................... 32 REFINED: PROTEIN STRUCTURE REFINEMENT USING MACHINE LEARNING GUIDED RESTRAINED RELAXATION .................................................. 32 BHATTACHARYA-SINGQ, BHATTACHARYA-SERVER .............................................................................................................. 33 SCORED: ESTIMATING GLOBAL DISTANCE TEST USING DEEP DISCRIMINATIVE BINARY CLASSIFIER ENSEMBLE .................................................. 33 BONIECKI_PRED ................................................................................................................................................................. 35 PROTEIN STRUCTURE REFINEMENT USING INTERMEDIATE RESOLUTION, COARSE-GRAINED MODEL, KNOWLEDGE-BASED ENERGY FUNCTION(S), MONTE CARLO METHODS, SUPPORTED BY MQAP CONSTRAINTS ......................................................................................................... 35 CAO-SERVER (TS) ............................................................................................................................................................... 36 COLLABORATIVE DE NOVO PROTEIN STRUCTURE PREDICTION USING STEPWISE FRAGMENT SAMPLING WITH HELP OF CONTACT PREDICTION AND MODEL SELECTION BASED ON DEEP LEARNING TECHNIQUES ................................................................................................................. 36 CARBONELAB (CAPRI) ........................................................................................................................................................ 38 2 COMBINING EVOLUTION- AND GEOMETRY-DRIVEN INTERFACE PREDICTIONS WITH KNOWLEDGE-BASED DISTANCE-DEPENDENT POTENTIALS FOR TEMPLATE-FREE MODELING IN CAPRI ROUND 46 ............................................................................................................................. 38 CLUSPRO (CAPRI) ............................................................................................................................................................... 40 HYBRID CLUSPRO SERVER IN 2018 CASP/CAPRI ROUNDS ................................................................................................................ 40 CPCLAB (RR)....................................................................................................................................................................... 42 TOPCONTACT: PROTEIN CONTACT META-PREDICTIONS THROUGH MACHINE LEARNING .............................................................................. 42 CPCLAB (TS) ....................................................................................................................................................................... 43 TOPSCORE: USING DEEP NEURAL NETWORKS AND LARGE DIVERSE DATASETS FOR ACCURATE PROTEIN MODEL QUALITY ASSESSMENT .................. 43 D-HAVEN ........................................................................................................................................................................... 45 TEMPLATE-BASED PROTEIN STRUCTURE PREDICTION BASED ON PROFILE-PROFILE ALIGNMENTS ................................................................ 45 DC_REFINE ......................................................................................................................................................................... 47 MODYCHOPS - MOLECULAR DYNAMICS COUPLED HOMOLOGUE PROTEIN STRUCTURE REFINEMENT PROTOCOL ......................................... 47 DELCLAB ............................................................................................................................................................................ 48 COMBINING ORTHODOX SEQUENCE HOMOLOGY ANALYSIS WITH SPECTRAL ANALYSIS FOR PROTEIN 3D STRUCTURE PREDICTION ........................ 48 DESTINI .............................................................................................................................................................................. 50 A DEEP-LEARNING APPROACH TO PROTEIN STRUCTURE PREDICTION ...................................................................................................... 50 DISTILL ............................................................................................................................................................................... 52 DISTILL FOR CASP13 .................................................................................................................................................................. 52 DL-HAVEN .......................................................................................................................................................................... 54 CONTACT PREDICTION AND DE NOVO PROTEIN STRUCTURE

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    221 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us