Designing and Evaluating the MULTICOM Protein Local and Global

Total Page:16

File Type:pdf, Size:1020Kb

Designing and Evaluating the MULTICOM Protein Local and Global Cao et al. BMC Structural Biology 2014, 14:13 http://www.biomedcentral.com/1472-6807/14/13 RESEARCH ARTICLE Open Access Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment Renzhi Cao1, Zheng Wang4 and Jianlin Cheng1,2,3* Abstract Background: Protein model quality assessment is an essential component of generating and using protein structural models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and MULTICOM- CONSTRUCT) that predicted both local and global quality of protein structural models. Results: MULTICOM-REFINE was a clustering approach that used the average pairwise structural similarity between models to measure the global quality and the average Euclidean distance between a model and several top ranked models to measure the local quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector machine-based methods of predicting both the local and global quality of a single protein model. MULTICOM- CONSTRUCT was a new weighted pairwise model comparison (clustering) method that used the weighted average similarity between models in a pool to measure the global model quality. Our experiments showed that the pairwise model assessment methods worked better when a large portion of models in the pool were of good quality, whereas single-model quality assessment methods performed better on some hard targets when only a small portion of models in the pool were of reasonable quality. Conclusions: Since digging out a few good models from a large pool of low-quality models is a major challenge in protein structure prediction, single model quality assessment methods appear to be poised to make important contributions to protein structure modeling. The other interesting finding was that single-model quality assessment scores could be used to weight the models by the consensus pairwise model comparison method to improve its accuracy. Keywords: Protein model quality assessment, Protein model quality assurance program, Protein structure prediction, Support vector machine, Clustering Background tries to fold a protein from scratch without using known Predicting protein tertiary structure from amino acid se- template structures. The two kinds of methods were often quence is of great importance in bioinformatics and combined to handle a full spectrum of protein structure computational biology [1,2]. During the last few decades, prediction problems ranging from relatively easy hom- a lot of protein tertiary structure prediction methods ology modeling to hard de novo prediction [10-13]. have been developed. One category of methods adopts a During protein structure prediction, one important template-based approach [3-7], which uses experimentally task is to assess the quality of structural models pro- determined structures as templates to build structural duced by protein structure prediction methods. A model models for a target protein without known structure. An- quality assessment (QA) method employed in a protein other category uses a template-free approach [8,9], which structure prediction pipeline is critical for ranking, refin- ing, and selecting models [3]. A model quality assess- * Correspondence: [email protected] ment method can generally predict a global quality score 1Computer Science Department, University of Missouri, Columbia, Missouri measuring the overall quality of a protein structure 65211, USA 2Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA model and a series of local quality scores measuring Full list of author information is available at the end of the article the local quality of each residue in the model. A global © 2014 Cao et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Cao et al. BMC Structural Biology 2014, 14:13 Page 2 of 12 http://www.biomedcentral.com/1472-6807/14/13 quality score can be a global distance test (GDT-TS) assessment method were used to benchmark model score [14-16] that is predicted to be the structural simi- quality assessment methods’ capability of distinguishing larity between a model and the unknown native struc- relatively small differences between more similar models. ture of a protein. A local quality score of a residue can The new settings provided us a good opportunity to assess be the Euclidean distance between the position of the the strength and weakness of our multi-model and single- residue in a model and that in the unknown native model protein model quality assessment methods in terms structure after they are superimposed. of accuracy, robustness, consistency and efficiency in In general, protein model quality assessment methods order to identify the gaps for further improvement. can be classified into two categories: multi-model In addition to evaluating our four servers on the methods [17-21] and single-model methods [13-17]. CASP10 benchmark, we compare our methods with three Multi-model methods largely use a consensus or cluster- popular multi-model clustering-based methods (Davis- ing approach to compare one model with other models QAconsensus [28], Pcons [29], and ModFOLDclust2 [21]). in a pool of input models to assess its quality. Generally, Our clustering-based methods (MULTICOM-REFINE, a model with a higher similarity with the rest of models MULTICOM-CONSTRUCT) performed comparably to in the pool receives a higher global quality score. The the three external tools in most cases. Our single-model methods tend to work well when a large portion of methods (MULTICOM-CLUSTER, MULTICOM-NOVEL) models in the input pool are of good quality, which is had a lower accuracy than the clustering-based methods, often the case for easy to medium hard template-based but performed considerably better than them on the modeling. Multi-model methods tend to work particularly models of hard template-free targets. Besides the reason- well if a large portion of good models were independently able performance and a comprehensive comparative generated by a number of independent, diverse protein study, our methods have some methodological innova- structure prediction methods as seen in the CASP (the tions such as using single-model quality scores to weight Critical Assessment of Techniques for Protein Structure models for clustering methods, repacking side chains Prediction) experiments, but they worked less well when before model evaluation, and improved machine learning being applied to the models generated by one single pro- methods for single-model quality assessment for template- tein structure prediction method because they prefer the free targets. average model of the largest model cluster in the model The rest of the paper is organized as follows. In the pool. And multi-model methods tend to completely fail if Results and discussions section, we analyze and discuss a significant portion of low quality modes are similar to the performance of the methods on the CASP10 bench- each other and thus dominate the pairwise model com- mark. In the Conclusion section, we summarize this work parison as seen in some cases during the 10th CASP ex- and conclude it with the directions of future work. In the periment (CASP10) held in 2012. Single-model methods Methods section, we introduce the methods in our protein strive to predict the quality of a single protein model with- model quality assessment servers tested in CASP10. out consulting any other models [22-26]. The perform- ance of single-model methods is still lagging behind the Results and discussions multi-model methods in most cases when most models in Results of global quality predictions the pool are of good quality [23,27]. However, because of We evaluated the global quality predictions using five their capability of assessing the quality of one individual measures (see the detailed descriptions of the evaluation model, they have potential to address one big challenge in methods in the Evaluation methods section). The results protein structure modeling – selecting a model of good of the global quality evaluation on Stage 1 of CASP10 quality from a large pool consisting of mostly irrelevant are shown in Table 1. The weighted pairwise model models. Furthermore, as the performance of multi-model comparison method MULTICOM-CONSTRUCT per- quality assessment methods start to converge, single- formed best among all our four servers according to all model methods appear to have a large room of improve- the five measures, suggesting using single-model quality ment as demonstrated in the CASP10 experiment. prediction scores as weights can improve the multi- In order to critically evaluate the performance of model pairwise comparison based quality prediction multi-model and single-model protein model quality as- methods such as MULTICOM-REFINE. The two multi- sessment methods, the CASP10 experiment was de- model global quality assessment methods had the better signed to assess them in two stages. On Stage 1, 20 average performance than the two single-model global models of each target spanning a wide range of quality quality assessment methods (MULTICOM-NOVEL and were used to assess the sensitivity of quality assessment MULTICOM-CLUSTER) on average on Stage 1, suggest- methods with respect to the size of input model pool ing that the advantage of multi-model methods over and the quality of input models. On Stage 2, about top single-model methods was not much affected by the 150 models selected by a naïve consensus model quality relatively small size of input models (i.e. 20). Instead, the Cao et al. BMC Structural Biology 2014, 14:13 Page 3 of 12 http://www.biomedcentral.com/1472-6807/14/13 Table 1 The average correlation (Ave.
Recommended publications
  • Estimation of Uncertainties in the Global Distance Test (GDT TS) for CASP Models
    RESEARCH ARTICLE Estimation of Uncertainties in the Global Distance Test (GDT_TS) for CASP Models Wenlin Li2, R. Dustin Schaeffer1, Zbyszek Otwinowski2, Nick V. Grishin1,2* 1 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390–9050, United States of America, 2 Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390–9050, United States of America * [email protected] Abstract a11111 The Critical Assessment of techniques for protein Structure Prediction (or CASP) is a com- munity-wide blind test experiment to reveal the best accomplishments of structure model- ing. Assessors have been using the Global Distance Test (GDT_TS) measure to quantify prediction performance since CASP3 in 1998. However, identifying significant score differ- ences between close models is difficult because of the lack of uncertainty estimations for OPEN ACCESS this measure. Here, we utilized the atomic fluctuations caused by structure flexibility to esti- Citation: Li W, Schaeffer RD, Otwinowski Z, Grishin mate the uncertainty of GDT_TS scores. Structures determined by nuclear magnetic reso- NV (2016) Estimation of Uncertainties in the Global nance are deposited as ensembles of alternative conformers that reflect the structural Distance Test (GDT_TS) for CASP Models. PLoS flexibility, whereas standard X-ray refinement produces the static structure averaged over ONE 11(5): e0154786. doi:10.1371/journal. time and space for the dynamic ensembles. To recapitulate the structural heterogeneous pone.0154786 ensemble in the crystal lattice, we performed time-averaged refinement for X-ray datasets Editor: Yang Zhang, University of Michigan, UNITED to generate structural ensembles for our GDT_TS uncertainty analysis.
    [Show full text]
  • Methods for the Refinement of Protein Structure 3D Models
    International Journal of Molecular Sciences Review Methods for the Refinement of Protein Structure 3D Models Recep Adiyaman and Liam James McGuffin * School of Biological Sciences, University of Reading, Reading RG6 6AS, UK; [email protected] * Correspondence: l.j.mcguffi[email protected]; Tel.: +44-0-118-378-6332 Received: 2 April 2019; Accepted: 7 May 2019; Published: 1 May 2019 Abstract: The refinement of predicted 3D protein models is crucial in bringing them closer towards experimental accuracy for further computational studies. Refinement approaches can be divided into two main stages: The sampling and scoring stages. Sampling strategies, such as the popular Molecular Dynamics (MD)-based protocols, aim to generate improved 3D models. However, generating 3D models that are closer to the native structure than the initial model remains challenging, as structural deviations from the native basin can be encountered due to force-field inaccuracies. Therefore, different restraint strategies have been applied in order to avoid deviations away from the native structure. For example, the accurate prediction of local errors and/or contacts in the initial models can be used to guide restraints. MD-based protocols, using physics-based force fields and smart restraints, have made significant progress towards a more consistent refinement of 3D models. The scoring stage, including energy functions and Model Quality Assessment Programs (MQAPs) are also used to discriminate near-native conformations from non-native conformations. Nevertheless, there are often very small differences among generated 3D models in refinement pipelines, which makes model discrimination and selection problematic. For this reason, the identification of the most native-like conformations remains a major challenge.
    [Show full text]
  • Computational Methods for Evaluation of Protein Structural Models
    Computational Methods for Evaluation of Protein Structural Models by Rahul Alapati A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 4, 2019 Keywords: Protein Structure Comparison, Protein Decoy Clustering, Integration of side-chain orientation and global distance-based measures, CASP13, clustQ, SPECS Copyright 2019 by Rahul Alapati Approved by Debswapna Bhattacharya, Chair, Assistant Professor of Computer Science and Software Engineering Dean Hendrix, Associate Professor of Computer Science and Software Engineering Gerry Dozier, Professor of Computer Science and Software Engineering Abstract Proteins are essential parts of organisms and participate in virtually every process within the cells. The function of a protein is closely related to its structure than to its amino acid sequence. Hence, the study of the protein’s structure can give us valuable information about its functions. Due to the complex and expensive nature of the experimental techniques, computational methods are often the only possibility to obtain structural information of a protein. Major advancements in the field of protein structure prediction have made it possible to generate a large number of models for a given protein in a short amount of time. Hence, to assess the accuracy of any computational protein structure prediction method, evaluation of the similarity between the predicted protein models and the experimentally determined native structure is one of the most important tasks. Existing approaches in model quality assessment suffer from two key challenges: (1) difficulty in efficiently ranking and selecting optimal models from a large number of protein structures (2) lack of a similarity measure that takes into consideration the side-chain orientation along with main chain Carbon alpha (Cα) and Side-Chain (SC) atoms for comparing two protein structures.
    [Show full text]
  • A Glance Into the Evolution of Template-Free Protein Structure Prediction Methodologies Arxiv:2002.06616V2 [Q-Bio.QM] 24 Apr 2
    A glance into the evolution of template-free protein structure prediction methodologies Surbhi Dhingra1, Ramanathan Sowdhamini2, Frédéric Cadet3,4,5, and Bernard Offmann∗1 1Université de Nantes, CNRS, UFIP, UMR6286, F-44000 Nantes, France 2Computational Approaches to Protein Science (CAPS), National Centre for Biological Sciences (NCBS), Tata Institute for Fundamental Research (TIFR), Bangalore 560-065, India 3University of Paris, BIGR—Biologie Intégrée du Globule Rouge, Inserm, UMR_S1134, Paris F-75015, France 4Laboratory of Excellence GR-Ex, Boulevard du Montparnasse, Paris F-75015, France 5DSIMB, UMR_S1134, BIGR, Inserm, Faculty of Sciences and Technology, University of La Reunion, Saint-Denis F-97715, France Abstract Prediction of protein structures using computational approaches has been explored for over two decades, paving a way for more focused research and development of algorithms in com- parative modelling, ab intio modelling and structure refinement protocols. A tremendous suc- cess has been witnessed in template-based modelling protocols, whereas strategies that involve template-free modelling still lag behind, specifically for larger proteins (> 150 a.a.). Various improvements have been observed in ab initio protein structure prediction methodologies over- time, with recent ones attributed to the usage of deep learning approaches to construct protein backbone structure from its amino acid sequence. This review highlights the major strategies undertaken for template-free modelling of protein structures while discussing few tools devel- arXiv:2002.06616v2 [q-bio.QM] 24 Apr 2020 oped under each strategy. It will also briefly comment on the progress observed in the field of ab initio modelling of proteins over the course of time as seen through the evolution of CASP platform.
    [Show full text]
  • Single-Sequence Protein Structure Prediction Using Language Models from Deep Learning
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.02.454840; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Single-sequence protein structure prediction using language models from deep learning ! Ratul Chowdhurya,*, Nazim Bouattaa,*, Surojit Biswasb,c,*, Charlotte Rochereaud, George M. Churcha,b, Peter K. Sorgera,†, and Mohammed AlQuraishia,e,† a Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA! b Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA! c Nabla Bio. Inc. d Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA.! e Department of Systems Biology, Columbia University, New York, NY, USA * These authors contributed equally † Co-corresponding authors Address correspondence to: Peter Sorger Warren Alpert 432 200 Longwood Avenue Harvard Medical School, Boston MA 02115 [email protected] cc: [email protected] Mohammed AlQuraishi Columbia University Irving Medical Center New York Presbyterian Hospital Building PH-18, 201G 622 West 168th St. New York, NY 10032 [email protected] ORCID Numbers Peter K. Sorger 0000-0002-3364-1838 Mohammed N. AlQuraishi 0000-0001-6817-1322 ! bioRxiv preprint doi: https://doi.org/10.1101/2021.08.02.454840; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Are Attention and Symmetries All You Need?
    feature articles Protein structure prediction by AlphaFold2: are attention and symmetries all you need? ISSN 2059-7983 Nazim Bouatta,a* Peter Sorgera* and Mohammed AlQuraishib* aLaboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA, and bDepartment of Systems Biology, Columbia University, New York, NY 10032, USA. *Correspondence e-mail: [email protected], [email protected], [email protected] Received 8 July 2021 Accepted 21 July 2021 The functions of most proteins result from their 3D structures, but determining their structures experimentally remains a challenge, despite steady advances in Edited by R. J. Read, University of Cambridge, crystallography, NMR and single-particle cryoEM. Computationally predicting United Kingdom the structure of a protein from its primary sequence has long been a grand challenge in bioinformatics, intimately connected with understanding protein Keywords: AlphaFold2; protein structure chemistry and dynamics. Recent advances in deep learning, combined with the prediction; CASP14. availability of genomic data for inferring co-evolutionary patterns, provide a new approach to protein structure prediction that is complementary to longstanding physics-based approaches. The outstanding performance of AlphaFold2 in the recent Critical Assessment of protein Structure Prediction (CASP14) experiment demonstrates the remarkable power of deep learning in structure prediction. In this perspective, we focus on the key features of AlphaFold2, including its use of (i) attention mechanisms and Transformers to capture long-range dependencies, (ii) symmetry principles to facilitate reasoning over protein structures in three dimensions and (iii) end-to-end differentiability as a unifying framework for learning from protein data. The rules of protein folding are ultimately encoded in the physical principles that underpin it; to conclude, the implications of having a powerful computational model for structure prediction that does not explicitly rely on those principles are discussed.
    [Show full text]
  • Highly Accurate Protein Structure Prediction with Alphafold
    Article Highly accurate protein structure prediction with AlphaFold https://doi.org/10.1038/s41586-021-03819-2 John Jumper1,4 ✉, Richard Evans1,4, Alexander Pritzel1,4, Tim Green1,4, Michael Figurnov1,4, Olaf Ronneberger1,4, Kathryn Tunyasuvunakool1,4, Russ Bates1,4, Augustin Žídek1,4, Received: 11 May 2021 Anna Potapenko1,4, Alex Bridgland1,4, Clemens Meyer1,4, Simon A. A. Kohl1,4, Accepted: 12 July 2021 Andrew J. Ballard1,4, Andrew Cowie1,4, Bernardino Romera-Paredes1,4, Stanislav Nikolov1,4, Rishub Jain1,4, Jonas Adler1, Trevor Back1, Stig Petersen1, David Reiman1, Ellen Clancy1, Published online: 15 July 2021 Michal Zielinski1, Martin Steinegger2,3, Michalina Pacholska1, Tamas Berghammer1, Open access Sebastian Bodenstein1, David Silver1, Oriol Vinyals1, Andrew W. Senior1, Koray Kavukcuoglu1, Pushmeet Kohli1 & Demis Hassabis1,4 ✉ Check for updates Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental efort1–4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking efort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’8—has been an important open research problem for more than 50 years9. Despite recent progress10–14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available.
    [Show full text]
  • Template-Based Protein Modeling Using the Raptorx Web Server
    PROTOCOL Template-based protein structure modeling using the RaptorX web server Morten Källberg1–3, Haipeng Wang1,3, Sheng Wang1, Jian Peng1, Zhiyong Wang1, Hui Lu2 & Jinbo Xu1 1Toyota Technological Institute at Chicago, Chicago, Illinois, USA. 2Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA. 3These authors contributed equally to this work. Correspondence should be addressed to J.X. ([email protected]). Published online 19 July 2012; doi:10.1038/nprot.2012.085 A key challenge of modern biology is to uncover the functional role of the protein entities that compose cellular proteomes. To this end, the availability of reliable three-dimensional atomic models of proteins is often crucial. This protocol presents a community-wide web-based method using RaptorX (http://raptorx.uchicago.edu/) for protein secondary structure prediction, template-based tertiary structure modeling, alignment quality assessment and sophisticated probabilistic alignment sampling. RaptorX distinguishes itself from other servers by the quality of the alignment between a target sequence and one or multiple distantly related template proteins (especially those with sparse sequence profiles) and by a novel nonlinear scoring function and a probabilistic-consistency algorithm. Consequently, RaptorX delivers high-quality structural models for many targets with only remote templates. At present, it takes RaptorX ~35 min to finish processing a sequence of 200 amino acids. Since its official release in August 2011, RaptorX has processed ~6,000 sequences submitted by ~1,600 users from around the world. INTRODUCTION Proteomes constitute the backbone of cellular function by carrying used by threading methods8,9 such as MUSTER10, SPARKS11,12 and out the tasks encoded in the genes expressed by a given cell type.
    [Show full text]
  • Protein Shape Sampled by Ion Mobility Mass Spectrometry Consistently Improves Protein Structure Prediction
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.27.445812; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Protein shape sampled by ion mobility mass spectrometry consistently improves protein structure prediction SM Bargeen Alam Turzo1, Justin T. Seffernick1, Amber D. Rolland2, Micah T. Donor2, Sten Heinze1, James S. Prell2, Vicki Wysocki1 and Steffen Lindert1, * 1Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210 2Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403 * Correspondence to: Department of Chemistry and Biochemistry, Ohio State University 2114 NeWman & Wolfrom Laboratory, 100 W. 18th Avenue, Columbus, OH 43210 614-292-8284 (office), 614-292-1685 (fax) [email protected] Abstract Among a Wide variety of mass spectrometry (MS) methodologies available for structural characterizations of proteins, ion mobility (IM) provides structural information about protein shape and size in the form of an orientationally averaged collision cross-section (CCS). While IM data have been predominantly employed for the structural assessment of protein complexes, CCS data from IM experiments have not yet been used to predict tertiary structure from sequence. Here, We are showing that IM data can significantly improve protein structure determination using the modeling suite Rosetta. The Rosetta Projection Approximation using Rough Circular Shapes (PARCS) algorithm Was developed that allows for fast and accurate prediction of CCS from structure. Following successful rigorous testing for accuracy, speed, and convergence of PARCS, an integrative modelling approach Was developed in Rosetta to use CCS data from IM experiments.
    [Show full text]
  • And Contact-Based Protein Structure Prediction
    International Journal of Molecular Sciences Review Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction Donghyuk Suh 1 , Jai Woo Lee 1 , Sun Choi 1 and Yoonji Lee 2,* 1 Global AI Drug Discovery Center, School of Pharmaceutical Sciences, College of Pharmacy and Graduate, Ewha Womans University, Seoul 03760, Korea; [email protected] (D.S.); [email protected] (J.W.L.); [email protected] (S.C.) 2 College of Pharmacy, Chung-Ang University, Seoul 06974, Korea * Correspondence: [email protected] Abstract: The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins’ 3D structural compo- nents is now heavily dependent on machine learning techniques that interpret how protein sequences and their homology govern the inter-residue contacts and structural organization. Especially, meth- ods employing deep neural networks have had a significant impact on recent CASP13 and CASP14 competition. Here, we explore the recent applications of deep learning methods in the protein structure prediction area. We also look at the potential opportunities for deep learning methods to identify unknown protein structures and functions to be discovered and help guide drug–target interactions. Although significant problems still need to be addressed, we expect these techniques in the near future to play crucial roles in protein structural bioinformatics as well as in drug discovery. Keywords: structural bioinformatics; deep learning; protein sequence homology; 3D structure of Citation: Suh, D.; Lee, J.W.; Choi, S.; Lee, Y. Recent Applications of Deep proteins; drug discovery Learning Methods on Evolution- and Contact-Based Protein Structure Prediction.
    [Show full text]
  • View a Copy of This Licence, Visit Creativeco​ Mmons​ .Org/Licen​ Ses/By/4.0/​
    Adhikari et al. BMC Bioinformatics (2021) 22:8 https://doi.org/10.1186/s12859-020-03938-z SOFTWARE Open Access DISTEVAL: a web server for evaluating predicted protein distances Badri Adhikari1* , Bikash Shrestha1, Matthew Bernardini1, Jie Hou2 and Jamie Lea1 *Correspondence: [email protected] Abstract 1 Department of Computer Background: Protein inter-residue contact and distance prediction are two key Science, University of Missouri-St. Louis, 312 intermediate steps essential to accurate protein structure prediction. Distance predic- Express Scripts Hall, St. Louis, tion comes in two forms: real-valued distances and ‘binned’ distograms, which are a MO, USA more fnely grained variant of the binary contact prediction problem. The latter has Full list of author information is available at the end of the been introduced as a new challenge in the 14th Critical Assessment of Techniques for article Protein Structure Prediction (CASP14) 2020 experiment. Despite the recent proliferation of methods for predicting distances, few methods exist for evaluating these predic- tions. Currently only numerical metrics, which evaluate the entire prediction at once, are used. These give no insight into the structural details of a prediction. For this reason, new methods and tools are needed. Results: We have developed a web server for evaluating predicted inter-residue dis- tances. Our server, DISTEVAL, accepts predicted contacts, distances, and a true structure as optional inputs to generate informative heatmaps, chord diagrams, and 3D models. All of these outputs facilitate visual and qualitative assessment. The server also evalu- ates predictions using other metrics such as mean absolute error, root mean squared error, and contact precision.
    [Show full text]
  • Protein Structure Similarities Patrice Koehl
    348 Protein structure similarities Patrice Koehl Comparison of protein structures can reveal distant All protein structures determined experimentally, either evolutionary relationships that would not be detected by by X-ray crystallography or NMR spectroscopy, are sequence information alone. This helps to infer functional deposited in a centralized resource, the Protein Data Bank properties. In recent years, many methods for pairwise protein (PDB) [2]. As of 5th December 2000, the PDB contains structure alignment have been proposed and are now available 13,861 structures of proteins, nucleic acids and on the World Wide Web. Although these methods have made protein–nucleic acid complexes. A striking feature derived it possible to compare all available protein structures, they also from this wealth of data is that nearly all proteins have highlight the remaining difficulties in defining a reliable score structural similarities to other proteins. Although these for protein structure similarities. similarities may arise from general principles of physics and chemistry that limit the number of protein folds, they Addresses may also result from evolutionary relationships. Department of Structural Biology, Fairchild Building, Approaches that identify and examine these structural Stanford University, Stanford, California 94305, USA; relationships have relied on the classification of proteins, e-mail: [email protected] using either structural information alone (CATH [3] and Current Opinion in Structural Biology 2001, 11:348–353 FSSP [4]) or a combination of structural and evolution information with a good deal of human expertise (SCOP 0959-440X/01/$ — see front matter © 2001 Elsevier Science Ltd. All rights reserved. [5]). In this paper, I will review recent progress in how structural similarities are identified.
    [Show full text]