Template-Based Protein Modeling Using the Raptorx Web Server
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Community Proposal to Integrate Structural
F1000Research 2020, 9(ELIXIR):278 Last updated: 11 JUN 2020 OPINION ARTICLE A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo Community) [version 1; peer review: 1 approved, 3 approved with reservations] Christine Orengo1, Sameer Velankar2, Shoshana Wodak3, Vincent Zoete4, Alexandre M.J.J. Bonvin 5, Arne Elofsson 6, K. Anton Feenstra 7, Dietland L. Gerloff8, Thomas Hamelryck9, John M. Hancock 10, Manuela Helmer-Citterich11, Adam Hospital12, Modesto Orozco12, Anastassis Perrakis 13, Matthias Rarey14, Claudio Soares15, Joel L. Sussman16, Janet M. Thornton17, Pierre Tuffery 18, Gabor Tusnady19, Rikkert Wierenga20, Tiina Salminen21, Bohdan Schneider 22 1Structural and Molecular Biology Department, University College, London, UK 2Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, CB10 1SD, UK 3VIB-VUB Center for Structural Biology, Brussels, Belgium 4Department of Oncology, Lausanne University, Swiss Institute of Bioinformatics, Lausanne, Switzerland 5Bijvoet Center, Faculty of Science – Chemistry, Utrecht University, Utrecht, 3584CH, The Netherlands 6Science for Life Laboratory, Stockholm University, Solna, S-17121, Sweden 7Dept. Computer Science, Center for Integrative Bioinformatics VU (IBIVU), Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands 8Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg 9Bioinformatics center, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, -
Development of Novel Strategies for Template-Based Protein Structure Prediction
Imperial College London Department of Life Sciences PhD Thesis Development of novel strategies for template-based protein structure prediction Stefans Mezulis supervised by Prof. Michael Sternberg Prof. William Knottenbelt September 2016 Abstract The most successful methods for predicting the structure of a protein from its sequence rely on identifying homologous sequences with a known struc- ture and building a model from these structures. A key component of these homology modelling pipelines is a model combination method, responsible for combining homologous structures into a coherent whole. Presented in this thesis is poing2, a model combination method using physics-, knowledge- and template-based constraints to assemble proteins us- ing information from known structures. By combining intrinsic bond length, angle and torsional constraints with long- and short-range information ex- tracted from template structures, poing2 assembles simplified protein models using molecular dynamics algorithms. Compared to the widely-used model combination tool MODELLER, poing2 is able to assemble models of ap- proximately equal quality. When supplied only with poor quality templates or templates that do not cover the majority of the query sequence, poing2 significantly outperforms MODELLER. Additionally presented in this work is PhyreStorm, a tool for quickly and accurately aligning the three-dimensional structure of a query protein with the Protein Data Bank (PDB). The PhyreStorm web server provides comprehensive, current and rapid structural comparisons to the protein data bank, providing researchers with another tool from which a range of biological insights may be drawn. By partitioning the PDB into clusters of similar structures and performing an initial alignment to the representatives of each cluster, PhyreStorm is able to quickly determine which structures should be excluded from the alignment. -
Characterization of TSET, an Ancient and Widespread Membrane
RESEARCH ARTICLE elifesciences.org Characterization of TSET, an ancient and widespread membrane trafficking complex Jennifer Hirst1*†, Alexander Schlacht2†, John P Norcott3‡, David Traynor4‡, Gareth Bloomfield4, Robin Antrobus1, Robert R Kay4, Joel B Dacks2*, Margaret S Robinson1* 1Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom; 2Department of Cell Biology, University of Alberta, Edmonton, Canada; 3Department of Engineering, University of Cambridge, Cambridge, United Kingdom; 4Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract The heterotetrameric AP and F-COPI complexes help to define the cellular map of modern eukaryotes. To search for related machinery, we developed a structure-based bioinformatics tool, and identified the core subunits of TSET, a 'missing link' between the APs and COPI. Studies in Dictyostelium indicate that TSET is a heterohexamer, with two associated scaffolding proteins. TSET is non-essential in Dictyostelium, but may act in plasma membrane turnover, and is essentially identical to the recently described TPLATE complex, TPC. However, whereas TPC was reported to be plant-specific, we can identify a full or partial complex in every *For correspondence: jh228@ eukaryotic supergroup. An evolutionary path can be deduced from the earliest origins of the cam.ac.uk (JH); [email protected] (JBD); [email protected] (MSR) heterotetramer/scaffold coat to its multiple manifestations in modern organisms, including the mammalian muniscins, descendants of the TSET medium subunits. Thus, we have uncovered † These authors contributed the machinery for an ancient and widespread pathway, which provides new insights into early equally to this work eukaryotic evolution. ‡These authors also contributed DOI: 10.7554/eLife.02866.001 equally to this work Competing interests: The authors declare that no competing interests exist. -
Structure Prediction, Fold Recognition and Homology Modelling
Structure prediction, fold recognition and homology modelling Marjolein Thunnissen Lund September 2009 Steps in protein modelling Similarity search (BLAST) Multiple alignment 3-D structure known No Structure known Comparative Modelling Secondary structure prediction Fold recognition Ab initio (Rosetta) Structure Prediction 1) Prediction of secondary structure. a) Method of Chou and Fasman b) Neural networks c) hydrophobicity plots 2) Prediction of tertiary structure. a) Ab initio structure prediction b) Threading - 1D-3D profiles - Knowledge based potentials c) Homology modelling How does sequence identity correlate with structural similarity Analysis by Chotia and Lesk (89) • 100% sequence identity: rmsd = experimental error • <25% (twilight zone), structures might be similar but can also be different • Rigid body movements make rmsd bigger Secondary structure prediction: Take the sequence and, using rules derived from known structures, predict the secondary structure that is most likely to be adopted by each residue Why secondary structure prediction ? • A major part of the general folding prediction problem. • The first method of obtaining some structural information from a newly determined sequence. Rules governing !-helix and "-sheet structures provide guidelines for selecting specific mutations. • Assignment of sec. str. can help to confirm structural and functional relationship between proteins when sequences homology is weak (used in threading experiments). • Important in establishing alignments during model building by homology; the first step in attempts to generate 3D models Some interesting facts 2nd structure predictions • based on primary sequence only • accuracy 64% -75% • higher accuracy for !-helices than "! strands • accuracy is dependent on protein family • predictions of engineered proteins are less accurate Methods: •Statistical methods based on studies of databases of known protein structures from which structural propensities for all amino acids are calculated. -
Estimation of Uncertainties in the Global Distance Test (GDT TS) for CASP Models
RESEARCH ARTICLE Estimation of Uncertainties in the Global Distance Test (GDT_TS) for CASP Models Wenlin Li2, R. Dustin Schaeffer1, Zbyszek Otwinowski2, Nick V. Grishin1,2* 1 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390–9050, United States of America, 2 Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390–9050, United States of America * [email protected] Abstract a11111 The Critical Assessment of techniques for protein Structure Prediction (or CASP) is a com- munity-wide blind test experiment to reveal the best accomplishments of structure model- ing. Assessors have been using the Global Distance Test (GDT_TS) measure to quantify prediction performance since CASP3 in 1998. However, identifying significant score differ- ences between close models is difficult because of the lack of uncertainty estimations for OPEN ACCESS this measure. Here, we utilized the atomic fluctuations caused by structure flexibility to esti- Citation: Li W, Schaeffer RD, Otwinowski Z, Grishin mate the uncertainty of GDT_TS scores. Structures determined by nuclear magnetic reso- NV (2016) Estimation of Uncertainties in the Global nance are deposited as ensembles of alternative conformers that reflect the structural Distance Test (GDT_TS) for CASP Models. PLoS flexibility, whereas standard X-ray refinement produces the static structure averaged over ONE 11(5): e0154786. doi:10.1371/journal. time and space for the dynamic ensembles. To recapitulate the structural heterogeneous pone.0154786 ensemble in the crystal lattice, we performed time-averaged refinement for X-ray datasets Editor: Yang Zhang, University of Michigan, UNITED to generate structural ensembles for our GDT_TS uncertainty analysis. -
Methods for the Refinement of Protein Structure 3D Models
International Journal of Molecular Sciences Review Methods for the Refinement of Protein Structure 3D Models Recep Adiyaman and Liam James McGuffin * School of Biological Sciences, University of Reading, Reading RG6 6AS, UK; [email protected] * Correspondence: l.j.mcguffi[email protected]; Tel.: +44-0-118-378-6332 Received: 2 April 2019; Accepted: 7 May 2019; Published: 1 May 2019 Abstract: The refinement of predicted 3D protein models is crucial in bringing them closer towards experimental accuracy for further computational studies. Refinement approaches can be divided into two main stages: The sampling and scoring stages. Sampling strategies, such as the popular Molecular Dynamics (MD)-based protocols, aim to generate improved 3D models. However, generating 3D models that are closer to the native structure than the initial model remains challenging, as structural deviations from the native basin can be encountered due to force-field inaccuracies. Therefore, different restraint strategies have been applied in order to avoid deviations away from the native structure. For example, the accurate prediction of local errors and/or contacts in the initial models can be used to guide restraints. MD-based protocols, using physics-based force fields and smart restraints, have made significant progress towards a more consistent refinement of 3D models. The scoring stage, including energy functions and Model Quality Assessment Programs (MQAPs) are also used to discriminate near-native conformations from non-native conformations. Nevertheless, there are often very small differences among generated 3D models in refinement pipelines, which makes model discrimination and selection problematic. For this reason, the identification of the most native-like conformations remains a major challenge. -
Designing and Evaluating the MULTICOM Protein Local and Global
Cao et al. BMC Structural Biology 2014, 14:13 http://www.biomedcentral.com/1472-6807/14/13 RESEARCH ARTICLE Open Access Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment Renzhi Cao1, Zheng Wang4 and Jianlin Cheng1,2,3* Abstract Background: Protein model quality assessment is an essential component of generating and using protein structural models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and MULTICOM- CONSTRUCT) that predicted both local and global quality of protein structural models. Results: MULTICOM-REFINE was a clustering approach that used the average pairwise structural similarity between models to measure the global quality and the average Euclidean distance between a model and several top ranked models to measure the local quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector machine-based methods of predicting both the local and global quality of a single protein model. MULTICOM- CONSTRUCT was a new weighted pairwise model comparison (clustering) method that used the weighted average similarity between models in a pool to measure the global model quality. Our experiments showed that the pairwise model assessment methods worked better when a large portion of models in the pool were of good quality, whereas single-model quality assessment methods performed better on some hard targets when only a small portion of models in the pool were of reasonable quality. Conclusions: Since digging out a few good models from a large pool of low-quality models is a major challenge in protein structure prediction, single model quality assessment methods appear to be poised to make important contributions to protein structure modeling. -
Progress and Challenges in Protein Structure Prediction Yang Zhang
Available online at www.sciencedirect.com Progress and challenges in protein structure prediction Yang Zhang Depending on whether similar structures are found in the PDB The crucial problems/efforts in the field of protein struc- library, the protein structure prediction can be categorized into ture prediction include: first, for the sequences of similar template-based modeling and free modeling. Although structures in PDB (especially those of weakly/distant threading is an efficient tool to detect the structural analogs, the homologous relation to the target), how to identify the advancements in methodology development have come to a correct templates and how to refine the template structure steady state. Encouraging progress is observed in structure closer to the native; second, for the sequences without refinement which aims at drawing template structures closer to appropriate templates, how to build models of correct the native; this has been mainly driven by the use of multiple topology from scratch. The progress made along these structure templates and the development of hybrid knowledge- directions was assessed in the recent CASP7 experiment based and physics-based force fields. For free modeling, [5] under the categories of template-based modeling exciting examples have been witnessed in folding small (TBM) and free modeling (FM). Here, I will review proteins to atomic resolutions. However, predicting structures the new progress and challenges in these directions. for proteins larger than 150 residues still remains a challenge, with -
The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis
PROTOCOL The Phyre2 web portal for protein modeling, prediction and analysis Lawrence A Kelley1, Stefans Mezulis1, Christopher M Yates1,2, Mark N Wass1,2 & Michael J E Sternberg1 1Structural Bioinformatics Group, Imperial College London, London, UK. 2Present addresses: University College London (UCL) Cancer Institute, London, UK (C.M.Y.); Centre for Molecular Processing, School of Biosciences, University of Kent, Kent, UK (M.N.W.). Correspondence should be addressed to L.A.K. ([email protected]). Published online 7 May 2015; doi:10.1038/nprot.2015.053 Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user’s protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. -
Is the Growth Rate of Protein Data Bank Sufficient to Solve the Protein Structure Prediction Problem Using Template-Based Modeling?
Bio-Algorithms and Med-Systems 2015; 11(1): 1–7 Review Michal Brylinski* Is the growth rate of Protein Data Bank sufficient to solve the protein structure prediction problem using template-based modeling? Abstract: The Protein Data Bank (PDB) undergoes an Introduction exponential expansion in terms of the number of mac- romolecular structures deposited every year. A pivotal Linus Pauling, a chemist, peace activist, educator, and question is how this rapid growth of structural informa- the only person to be awarded two unshared Nobel Prizes tion improves the quality of three-dimensional models (Nobel Prize in Chemistry in 1954 and Nobel Peace Prize constructed by contemporary bioinformatics approaches. in 1962), concluded his Nobel Lecture with the following To address this problem, we performed a retrospective remark: “We may, I believe, anticipate that the chemist analysis of the structural coverage of a representative of the future who is interested in the structure of pro- set of proteins using remote homology detected by COM- teins, nucleic acids, polysaccharides, and other complex PASS and HHpred. We show that the number of proteins substances with high molecular weight will come to rely whose structures can be confidently predicted increased upon a new structural chemistry, involving precise geo- during a 9-year period between 2005 and 2014 on account metrical relationships among the atoms in the molecules of the PDB growth alone. Nevertheless, this encouraging and the rigorous application of the new structural prin- trend slowed down noticeably around the year 2008 and ciples, and that great progress will be made, through this has yielded insignificant improvements ever since. -
Computational Methods for Evaluation of Protein Structural Models
Computational Methods for Evaluation of Protein Structural Models by Rahul Alapati A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 4, 2019 Keywords: Protein Structure Comparison, Protein Decoy Clustering, Integration of side-chain orientation and global distance-based measures, CASP13, clustQ, SPECS Copyright 2019 by Rahul Alapati Approved by Debswapna Bhattacharya, Chair, Assistant Professor of Computer Science and Software Engineering Dean Hendrix, Associate Professor of Computer Science and Software Engineering Gerry Dozier, Professor of Computer Science and Software Engineering Abstract Proteins are essential parts of organisms and participate in virtually every process within the cells. The function of a protein is closely related to its structure than to its amino acid sequence. Hence, the study of the protein’s structure can give us valuable information about its functions. Due to the complex and expensive nature of the experimental techniques, computational methods are often the only possibility to obtain structural information of a protein. Major advancements in the field of protein structure prediction have made it possible to generate a large number of models for a given protein in a short amount of time. Hence, to assess the accuracy of any computational protein structure prediction method, evaluation of the similarity between the predicted protein models and the experimentally determined native structure is one of the most important tasks. Existing approaches in model quality assessment suffer from two key challenges: (1) difficulty in efficiently ranking and selecting optimal models from a large number of protein structures (2) lack of a similarity measure that takes into consideration the side-chain orientation along with main chain Carbon alpha (Cα) and Side-Chain (SC) atoms for comparing two protein structures. -
Statistical Inference for Template-Based Protein Structure
Statistical Inference for template-based protein structure prediction by Jian Peng Submitted to: Toyota Technological Institute at Chicago 6045 S. Kenwood Ave, Chicago, IL, 60637 For the degree of Doctor of Philosophy in Computer Science Thesis Committee: Jinbo Xu (Thesis Supervisor) David McAllester Daisuke Kihara Statistical Inference for template-based protein structure prediction by Jian Peng Submitted to: Toyota Technological Institute at Chicago 6045 S. Kenwood Ave, Chicago, IL, 60637 May 2013 For the degree of Doctor of Philosophy in Computer Science Thesis Committee: Jinbo Xu (Thesis Supervisor) Signature: Date: David McAllester Signature: Date: Daisuke Kihara Signature: Date: Abstract Protein structure prediction is one of the most important problems in computational biology. The most successful computational approach, also called template-based modeling, identifies templates with solved crystal structures for the query proteins and constructs three dimensional models based on sequence/structure alignments. Although substantial effort has been made to improve protein sequence alignment, the accuracy of alignments between distantly related proteins is still unsatisfactory. In this thesis, I will introduce a number of statistical machine learning methods to build accurate alignments between a protein sequence and its template structures, especially for proteins having only distantly related templates. For a protein with only one good template, we develop a regression-tree based Conditional Random Fields (CRF) model for pairwise protein sequence/structure alignment. By learning a nonlinear threading scoring function, we are able to leverage the correlation among different sequence and structural features. We also introduce an information-theoretic measure to guide the learning algorithm to better exploit the structural features for low-homology proteins with little evolutionary information in their sequence profile.