Comparison Between Surface and Subsurface Drip Irrigation Systems Using Effluents

Total Page:16

File Type:pdf, Size:1020Kb

Comparison Between Surface and Subsurface Drip Irrigation Systems Using Effluents COMPARISON BETWEEN SURFACE AND SUBSURFACE DRIP IRRIGATION SYSTEMS USING EFFLUENTS Maha Abdelhameed Elbana Ph.D. Dissertation Comparison between surface and subsurface drip irrigation systems using effluents Maha Abdelhameed Elbana July 2011 Universitat de Lleida Escola Tècnica Superior d’Enginyeria Agrària Departament d’Enginyeria Agroforestal Ph.D. Dissertation COMPARISON BETWEEN SURFACE AND SUBSURFACE DRIP IRRIGATION SYSTEMS USING EFFLUENTS Maha Abdelhameed Elbana July 2011 Universitat de Lleida Escola Tècnica Superior d’Enginyeria Agrària Departament d’Enginyeria Agroforestal COMPARISON BETWEEN SURFACE AND SUBSURFACE DRIP IRRIGATION SYSTEMS USING EFFLUENTS Ph.D. dissertation presented to the department of agroforestry engineering, School of Agricultural and Forestry Engineering, University of Lleida, Spain in partial fulfilment of the requirements of the Doctor of Philosophy degree under the direction of Dr. Jaume Puig i Bargués and Dr. Francisco Ramírez de Cartagena Bisbe Signature of the candidate Signatures of the thesis supervisors Dr. Jaume Puig i Bargués Dr. Francisco Ramírez de Cartagena Bisbe Signatures of the thesis advisor Dr. Joaquin Monserrat Viscarri If.. If you can keep your head when all about you are losing theirs and blaming it on you; If you can trust yourself when all men doubt you, but make allowance for their doubting too: If you can wait and not be tired by waiting, or, being lied about, don't deal in lies, or being hated don't give way to hating, and yet don't look too good, nor talk too wise; If you can dream---and not make dreams your master; If you can think---and not make thoughts your aim, If you can meet with Triumph and Disaster and treat those two impostors just the same: If you can bear to hear the truth you've spoken twisted by knaves to make a trap for fools, or watch the things you gave your life to, broken, and stoop and build'em up with worn-out tools; If you can make one heap of all your winnings and risk it on one turn of pitch-and-toss, and lose, and start again at your beginnings, and never breathe a word about your loss: If you can force your heart and nerve and sinew to serve your turn long after they are gone, and so hold on when there is nothing in you except the Will which says to them: "Hold on!" If you can talk with crowds and keep your virtue, or walk with Kings---nor lose the common touch, If neither foes nor loving friends can hurt you, If all men count with you, but none too much: If you can fill the unforgiving minute With sixty seconds' worth of distance run, Yours is the Earth and everything that's in it, and---which is more---you'll be a Man, my son! By Rudyard Kipling For you Tamer, and to all my lovely family The work presented in the current Ph.D. dissertation was realized under the investigation project number CGL2005-022017HID, which was entitled “Comparison between surface and subsurface drip irrigation systems using effluents” and was financed by the Spanish Ministry of Science and Innovation Acknowledgment I believe in that it will not be enough to express my gratitude in words to all those people who helped me pursuing my Ph.D. project and dissertation that they were, in fact, a team work. Even though, I would still like to give my thanks and appreciation to all these people. First of all, I would like to give my sincere thanks to my supervisors, Dr. Jaume Puig i Bargués and Dr. Francisco Ramírez de Cartagena who accepted me as a Ph.D. student and thereafter, they offered me so much advice, patiently supervising, and always guiding me in the right direction. I have learned a lot from them and without their help I could not have finished my dissertation successfully. Really I appreciate their critical comments, which enabled me to notice the weaknesses of my dissertation and make the necessary improvements according to their comments, and so I would like to give my sincere thanks to Dr. Joaquin Monserrat, the thesis advisor, who made his best effort for revising the presented dissertation. My sincere thanks go to the Spanish Ministry of Science and Innovation for its indispensable generous sponsoring throughout the project number CGL2005-02201/HID, which without its support and financial help, it would not have been possible for me to pursue and to complete this Ph.D. project successfully. Special thanks are also given to Dr. Miquel Duran i Ros who offered me a lot of friendly help during my research; our conversations enlightened my way of thinking and his brotherhood helped me to pass a lot of hard times, and also, I want to convey my heartfelt thanks to my colleagues in the Department of Chemical and Agricultural Engineering and Technology, University of Girona, Spain, Dr. Gerard Arbat, Dr. Joan Pujol, Lluís Bosch and Dr. Xavier Puigvert that without their friendship and support it would be hard to stay in a foreign environment for long time I want as well express my deep love and gratefulness to my dear friends Dr. Fatiha Kail, Dr. Mohamed Bahnassy, Nazha Elalaoui, Doaa Elshabrawy, Noha Abdelmoez, Dr. Noura Bakr, Dr. Rasha Badr and Dr. Shady Sleim who were always by my side in the dark times preventing me from giving up, and let the deep grief and pain rush me away. Really, I appreciate their kind support. Last but not least, I am greatly indebted to my family who form the backbone and origin of my happiness. They trusted and encouraged me presenting their entire support while I was abroad and away from home. Their love and confidence without any complaint or regret have enabled me to go forward on my way and complete this Ph.D. project. I owe every achievement after God to all of them. Maha Elbana I Resum Els sistemes de reg per degoteig es consideren com un mètode apropiat per a la reutilització d’aigües regenerades, ja que disminueixen els riscos sanitaris. No obstant això, el problema més important en l’aplicació dels efluents en els sistemes de reg localitzat és l’obturació dels filtres i degoters, el que disminueix la uniformitat de distribució del aigua. L’objectiu principal d’aquesta tesi doctoral va ser comparar el comportament hidràulic d’un sistema de reg per degoteig superficial (DI) i un d’enterrat (SDI) aplicant un efluent terciari amb tres freqüències de rentat dels laterals (sense rentat, un rentat al final de cada temporada de reg i un rentat mensual) amb dos tipus d’emissors (autocompensant i no autocompensant). Altres objectius han estat investigar la influència de la qualitat de l’efluent en el procés de filtració i calcular la pèrdua de càrrega i la durada dels cicles de filtració en el filtre de sorra mitjançant l’anàlisi dimensional. Els resultats van demostrar que la durada del cicle de filtració va dependre principalment de la qualitat de l’efluent aplicat i del diàmetre efectiu de la sorra utilitzada. També es va constatar que l’eficàcia del procés de filtració va ser deguda al diàmetre efectiu de la sorra del filtre i que quan menor va ser el diàmetre efectiu de la sorra utilitzada, més eficaç va ser la filtració. L’anàlisi dimensional va ajudar a desenvolupar un model matemàtic per a descriure la pèrdua de càrrega en el filtre amb un alt coeficient de determinació ajustat i una bona distribució del residus. A més, es va trobar que el cabal del lateral va dependre significativament del tipus de degoter, sistema de reg, la temporada de reg i la freqüència de neteja. En el sistema de DI, el cabal de l’emissor no autocompensant es va incrementar significativament durant l’experiment a causa d’un desgast de l’emissor i es va disminuir significativament en el sistema de SDI degut a l’obturació del degoters. El cabal del degoter autocompensant va augmentar durant l’experiment en els sistemes de DI i SDI. També es va observar que la causa principal de l’obturació de l’emissor en el sistema de DI va ser el desenvolupament de biofilm, mentre que en el SDI es va correspondre a una combinació de factors biològics i físics. Finalment, es va trobar que rentar els laterals una sola vegada al final de cada temporada de reg va ser la millor opció de maneig per assolir la major eficiència de distribució de l’aigua després de 1620 h de reg, tant en DI com SDI. II Resumen Los sistemas de riego por goteo se consideran como un método apropiado para la reutilización de aguas regeneradas, ya que disminuyen los riesgos sanitarios. Sin embargo, el problema más importante en la aplicación de los efluentes en sistemas de riego localizado es la obturación tanto de filtros como de goteros, lo que disminuye la uniformidad de distribución del agua. El objetivo principal de esta tesis doctoral es comparar el comportamiento de un sistema de riego por goteo superficial (DI) y otro enterrado (SDI) aplicando un efluente terciario con tres frecuencias de lavado de los laterales (sin lavado, un lavado al final de cada temporada de riego y otro mensual) con dos tipos de emisores (autocompensante y no autocompensante). Otros objetivos fueron investigar la influencia de la calidad del efluente en el proceso de filtración y calcular la pérdida de carga y la duración de los ciclos de filtración en filtro de arena mediante el análisis dimensional. Los resultados demostraron que la duración del ciclo de filtración dependió principalmente de la calidad del efluente aplicado y del diámetro efectivo de la arena utilizada.
Recommended publications
  • Sediment Transport Model for a Surface Irrigation System
    Hindawi Publishing Corporation Applied and Environmental Soil Science Volume 2013, Article ID 957956, 10 pages http://dx.doi.org/10.1155/2013/957956 Research Article Sediment Transport Model for a Surface Irrigation System Damodhara R. Mailapalli,1 Narendra S. Raghuwanshi,2 and Rajendra Singh2 1 BiologicalSystemsEngineering,UniversityofWisconsin,Madison,WI53706,USA 2 Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, India Correspondence should be addressed to Damodhara R. Mailapalli; [email protected] Received 16 March 2013; Revised 25 June 2013; Accepted 11 July 2013 Academic Editor: Keith Smettem Copyright © 2013 Damodhara R. Mailapalli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model wasevaluatedforbareandcroppedfurrowfields.Theresultsindicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event.
    [Show full text]
  • Subsurface Drip Irrigation (Sdi) Systems
    NETAFIM USA SUBSURFACE DRIP IRRIGATION (SDI) SYSTEMS ADVANCED DRIP/MICRO IRRIGATION TECHNOLOGIES SUBSURFACE DRIP IRRIGATION QUALITY AND DEPENDABILITY FROM THE LEADERS IN DRIP IRRIGATION For over 50 years, growers world-wide have counted on Netafim for the most reliable, cost-effective and efficient ways to deliver water, nutrients and chemicals to their crops. This tradition continues with subsurface drip irrigation (SDI), the most advanced method for irrigating agricultural crops. With proper management of water and nutrients, a subsurface drip irrigation system can deliver maximum yields and optimal water use efficiencies. Drip irrigation, whether surface or subsurface, often results in increased production and yields as well as increased quality and uniformity. It provides more efficient use of the applied water resulting in substantial water savings. The flexibility of drip irrigation increases a grower’s ability to farm marginal land. WHAT IS SUBSURFACE DRIP IRRIGATION (SDI)? Subsurface drip irrigation is a variation on traditional drip irrigation where the dripline (tubing and drippers) is buried beneath the soil surface, rather than laid on the ground, supplying water directly to the roots. The depth and distance the dripline is placed depends on the soil type and the plant’s root structure. SDI is more than an irrigation system, it is a root zone management tool. Fertilizer can be applied to the root zone in a quantity when it will be most beneficial - resulting in greater use efficiencies and better crop performance. SUBSURFACE DRIP IRRIGATION (SDI) ADVANTAGES The key benefit of a surface micro-irrigation system is to apply low volumes of water and nutrients uniformly to every plant across the entire field.
    [Show full text]
  • 4. Drainage of Irrigated Lands
    ARBA MINCH UNIVERSITY Water Technology Institute Faculty of Meteorology and Hydrology Course Name:-Irrigated Lands Hydrology Course Code:- MHH1403 CHAPTER FOUR DRAINAGE OF IRRIGATED LANDS Prepared by: Tegegn T.(MSc.) Hydrology Objectives of the chapter • By the end of the session, the student will able to: – Understand what we mean by Agricultural drainage – Understand causes of excess water in agricultural lands – Know Problems and effects of poor drainage – Understand need of drainage – Know different types of drainage 4/21/2020 2 4.1 Definition of Drainage • Good water management of an irrigation scheme not only requires proper water application but also a proper drainage system. • Agricultural drainage can be defined as the removal of excess surface water and/or the lowering of the groundwater table below the root zone in order to improve plant growth. 4/21/2020 3 Cont… Class activity • Be in group and discuss on following topics – Causes of excess water or rise of water table – What are the effects of poor drainage – Why drainage is needed? 4/21/2020 4 Causes of excess water or rise of WT: • Natural Causes: – Poor natural drainage of the subsoil – Submergence under floods – Deep percolation from rainfall – Drainage water coming from adjacent areas. • Artificial Causes: – High intensity of irrigated agriculture irrespective of the soil or subsoil – Heavy seepage losses from unlined canals – Enclosing irrigated fields with embankments – Non-maintenance of natural drainages or blocking of natural drainages channels by roads. – the extra water applied for the flushing away of 4/21/2020 salts from the root zone. 5 4.2 Problems and effects of poor drainage • Drainage problem could be: – Surface drainage problem ---- when excess water builds up the water table and reaches to the ground level (i.e.
    [Show full text]
  • Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A
    water Article Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A. Karina Y. Gutiérrez-Jurado 1, Alexander G. Fernald 2, Steven J. Guldan 3 and Carlos G. Ochoa 4,* 1 School of the Environment, Flinders University, Bedford Park, SA 5042, Australia; karina.gutierrez@flinders.edu.au 2 Water Resources Research Institute, New Mexico State University, Las Cruces, NM 88003, USA; [email protected] 3 Sustainable Agriculture Science Center, New Mexico State University, Alcalde, NM 87511, USA; [email protected] 4 Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected]; Tel.: +1-541-737-0933 Academic Editor: Ashok K. Chapagain Received: 18 December 2016; Accepted: 3 February 2017; Published: 10 February 2017 Abstract: Better understanding of surface water (SW) and groundwater (GW) interactions and water balances has become indispensable for water management decisions. This study sought to characterize SW-GW interactions in three crop fields located in three different irrigated valleys in northern New Mexico by (1) estimating deep percolation (DP) below the root zone in flood-irrigated crop fields; and (2) characterizing shallow aquifer response to inputs from DP associated with irrigation. Detailed measurements of irrigation water application, soil water content fluctuations, crop field runoff, and weather data were used in the water budget calculations for each field. Shallow wells were used to monitor groundwater level response to DP inputs. The amount of DP was positively and significantly related to the total amount of irrigation water applied for the Rio Hondo and Alcalde sites, but not for the El Rito site.
    [Show full text]
  • Selecting an Irrigation System, You Need to Consider Both the Initial System Cost and the Op- Erating Costs of the System
    Sprinkler Irrigation Surface Irrigation Irrigation can be expensive. Before you install an irrigation system, it is very important to Sprinkler irrigation is a high pressure and high determine that increased yield and better crop flow irrigation system. Water is pumped and dis- quality will result in sufficient increase in income tributed through laterals and sprinkler heads. to offset the cost of installing and operating the This system is often used on small farms be- irrigation system. This starts with choosing the cause it is adaptable to a wide range of soil and right system. field conditions. Irrigation systems can be divided into four classes: Surface, Sprinkler, Drip and Subsurface. Before deciding what method of irrigation to use, it is important to know how much and the quality of water is available, the soil type and slope of your crop fields and what crops you plan to irrigate. Surface Irrigation, water is applied by flowing across the field in furrows. This is usually done where field slopes are flatter and the soils less sandy. The water must make it across the field without over-watering the up- per portions and without causing erosion. Sprinkler Irrigation Costs: When selecting an irrigation system, you need to consider both the initial system cost and the op- erating costs of the system. The exact cost can only be determined once a system is designed, but the following table can act as a guide: Well and Pump $5,000 to 10,000 each Traveling Gun $1,000 to $8,000/ ac Hand Move System: $2,000 to $3,000/ ac Drip System $2,000 to $4000/ ac Solid Set System: $4,000 to $8,000/ ac Subsurface $3,000 to $6,000/ ac Selecting an Irrigation System Selecting a System.
    [Show full text]
  • Dissertation Simulating the Fate And
    DISSERTATION SIMULATING THE FATE AND TRANSPORT OF SALINITY SPECIES IN A SEMI- ARID AGRICULTURAL GROUNDWATER SYSTEM: MODEL DEVELOPMENT AND APPLICATION Submitted by Saman Tavakoli Kivi Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: Ryan T. Bailey Co-Advisor: Timothy K. Gates Michael J. Ronayne Aditi Bhaskar Copyright by Saman Tavakoli Kivi 2018 All Rights Reserved ABSTRACT SIMULATING THE FATE AND TRANSPORT OF SALINITY SPECIES IN A SEMI- ARID AGRICULTURAL GROUNDWATER SYSTEM: MODEL DEVELOPMENT AND APPLICATION Many irrigated agricultural areas worldwide suffer from salinization of soil, groundwater, and nearby river systems. Increased salinity concentrations, which can lead to decreased crop yield, are due principally to the presence of salt minerals and high rates of evapotranspiration. High groundwater salt loading to nearby river systems also affects downstream areas when saline river water is diverted for additional uses. Irrigation-induced salinity is the principal water quality problem in the semi-arid region of the western United States due to the extensive background quantities of salt in rocks and soils. Due to the importance of the problem and the complex hydro-chemical processes involved in salinity fate and transport, a physically-based spatially-distributed numerical model is needed to assess soil and groundwater salinity at the regional scale. Although several salinity transport models have been developed in recent decades, these models focus on salt species at the small scale (i.e. soil profile or field), and no attempts thus far have been made at simulating the fate, storage, and transport of individual interacting salt ions at the regional scale within a river basin.
    [Show full text]
  • Effects of Irrigation Performance on Water Balance: Krueng Baro Irri- Gation Scheme (Aceh-Indonesia) As a Case Study
    DOI: 10.2478/jwld-2019-0040 © Polish Academy of Sciences (PAN), Committee on Agronomic Sciences JOURNAL OF WATER AND LAND DEVELOPMENT Section of Land Reclamation and Environmental Engineering in Agriculture, 2019 2019, No. 42 (VII–IX): 12–20 © Institute of Technology and Life Sciences (ITP), 2019 PL ISSN 1429–7426, e-ISSN 2083-4535 Available (PDF): http://www.itp.edu.pl/wydawnictwo/journal; http://www.degruyter.com/view/j/jwld; http://journals.pan.pl/jwld Received 07.12.2018 Reviewed 05.03.2019 Accepted 07.03.2019 Effects of irrigation performance on water balance: A – study design B – data collection Krueng Baro Irrigation Scheme (Aceh-Indonesia) C – statistical analysis D – data interpretation E – manuscript preparation as a case study F – literature search Azmeri AZMERI1) ABCDEF , Alfiansyah YULIANUR2) AD, Uli ZAHRATI3) BC, Imam FAUDLI4) BC 1) orcid.org/0000-0002-3552-036X; Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department Jl. Tgk. Syeh Abdul Rauf No. 7, Darussalam – Banda Aceh 23111, Indonesia; e-mail: [email protected] 2) orcid.org/0000-0002-8679-1792; Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department, Banda Aceh, Indonesia; e-mail: [email protected] 3) orcid.org/0000-0001-8665-8193; Office of River Region of Sumatra-I, Lueng Bata, Banda Aceh, Indonesia; e-mail: [email protected] 4) orcid.org/0000-0002-4944-3449; Hydrology and hydraulics consultant; e-mail: [email protected] For citation: Azmeri A., Yulianur A., Zahrati U., Faudli I. 2019. Effects of irrigation performance on water balance: Krueng Baro Irri- gation Scheme (Aceh-Indonesia) as a case study.
    [Show full text]
  • 7. Design and Evaluation of Surface Irrigation Methods in Southern Gujarat Using Surdev (Gau)
    Joint Completion Report on IDNP Redt# 3 "Computer Modeling in Irrigation and Drainage" 7. DESIGN AND EVALUATION OF SURFACE IRRIGATION METHODS IN SOUTHERN GUJARAT USING SURDEV (GAU) 7.1 Introduction The study area is located in the central western coast of India in the Southern Gujarat. South Gujarat comprises of the Valsad, the Navsari, the Dang, the Surat and the Bharuch districts with rainfall varying from about 850 mm to 2000 mm. The general topography of the area is flat. The soils of the area are clayey while some parts also have clay loamsoils. The main crops of the South Gujarat are sugarcane, paddy and fruit crops. Paddy is taken both during khavifand summer seasons. Sugarcane crop occupies more than 50% of the culturable command area in South Gujarat and it is mostly irrigated with furrow method of irrigation. Furrow method of irrigation is also adopted for many other vegetable crops of this area. Paddy and fruit crops like banana, mango, and papaya are irrigated using basin irrigation method. In fruit crops, ring basin method of irrigation is adopted. In paddy, farmers adopt field to field irrigation. The area, in addition to heavy rainfall, receives canal water throughout the year. The region has many streams flowing from eastern side and draining into the Arabian Sea. Farmers of the region, due to easy availability of water, knowingly or unknowingly apply more water, especially in the upper reaches of the canal. On the other hand, in mid and tail reaches of canal command and in well-irrigated areas, the water application is less than the demand and is non-uniform.
    [Show full text]
  • Drip Vs. Surface Irrigation: a Comparison Focussing on Water Saving and Economic Returns Using Multicriteria Analysis Applied to Cotton
    biosystems engineering 122 (2014) 74e90 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/issn/15375110 Research Paper Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton Hanaa M. Darouich a,b, Celestina M.G. Pedras a,c, Jose´ M. Gonc¸alves a, Luı´s S. Pereira a,* a CEER e Biosystems Engineering, Institute of Agronomy, Technical University of Lisbon, Portugal b General Commission for Scientific Agriculture Research, Damascus, Syria c University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal article info This study explores the use of drip and surface irrigation decision support systems to select Article history: among furrow, border and drip irrigation systems for cotton, considering water saving and Received 30 July 2013 economic priorities. Data refers to farm field observations in Northeast of Syria. Simulation Received in revised form of drip irrigation was performed with MIRRIG model for various alternatives: double and 7 March 2014 single row per lateral, emitter spacing of 0.5 and 0.7 m, six alternative pipe layouts and five Accepted 27 March 2014 self-compensating and non-compensating emitters. Furrow and border irrigation alterna- Published online 23 April 2014 tives were designed and ranked with the SADREG model, considering lasered and non- lasered land levelling, field lengths of 50e200 m and various inflow discharges. A multi- Keywords: criteria analysis approach was used to analyse and compare the alternatives based upon Economic water productivity economic and water saving criteria. Results for surface irrigation indicate a slight advantage Decision support systems for long non-lasered graded furrows; non-lasered alternatives were selected due to eco- Deficit irrigation nomic considerations.
    [Show full text]
  • Surface Irrigation Return Flows Vary
    flooded throughout the growing season; 2.36 ac-ftlac were lost by seepage.) Surface irrigation the major crops in PDD are tomato, cot- Although the concentration of TDS ton, and other row and field crops, which in the spill water increased 1.7-foId, the return flowsvary are normally furrow irrigated. unit mass emission rate (Iblac) was only GCID captures and reuses about 44 44 percent of that brought in by the sup- percent of its drain waters within the dis- ply water, which is in line with the dis- trict and discharges the rest into the trict-wide 61 percent mass emission of Kenneth K. Tanji Colusa Basin Drain (CBD), where it is re- salts. Note that concentration of sus- Muhammad M. lqbal used downstream before final discharge pended solids was reduced by about one- Ann F. Quek back into the Sacramento River. PDD half, and the mass by nearly one-tenth. Ronald M.Van De Pol and the neighboring Central California As for nutrients, the nitrogen con- Linda P. Wagenet Irrigation District capture and reuse centration in the drain water was about Roger Fujii about 20 percent of PDDs surface drain- 1% times greater, but only 38 percent of Rudy J. Schnagl age (not counting reuse at farm levels) the nitrogen brought in by the water was Dave A. Prewitt and discharge the remainder into the discharged. It should be noted that about Grasslands Water District, where it is re- 90 percent of the total nitrogen was in uch attention is being focused on used in irrigated pastures and waterfowl the form of organic nitrogen, which im- M irrigation return flows as a result habitats.
    [Show full text]
  • Assessing Potential Land Suitability for Surface Irrigation Using Groundwater in Ethiopia
    Assessing Potential Land Suitability for Surface Irrigation using Groundwater in Ethiopia Introduction Although a detailed study on groundwater resources in Ethiopia is not available, a recent study by MacDonald et al. (2012) reported that the renewable groundwater storage in Africa is 100 times more than the annual renewable freshwater resources. An advantage of groundwater for irrigation of crops over surface water is its reliability and its tempered response to drought and variability in weather. Also, groundwater quality is typically better that surface water, requiring less treatment for human or livestock use. In Ethiopia, for example; groundwater is almost exclusively used for drinking water; and its use for irrigation of crops is limited. However, the need to increase food production in Ethiopia and other developing countries is reaching critical levels. It is important we more closely examine the groundwater resources in Ethiopia and suitability potential of land for irrigation using groundwater. Approach Potential land in Ethiopia suitable for irrigation using groundwater was identified using GIS-based Multi-Criteria Evaluation (MCE) techniques. The land suitability was determined by developing and assigning weight to the key factors that affect the irrigation potential of the land from groundwater using a 1 km grid. The factors used were identified from literature and from experts in the region (Akıncı et al., 2013; Chen et al., 2010; Mendas and Delali, 2012; Worqlul et al., 2015). Factors considered included physical land features (land use, soil and slope), climate characteristics (rainfall and evapotranspiration), and market access (proximity to roads and access to market). Factors were weighted using a pair-wise comparison matrix, reclassified, and overlaid to identify the suitable areas for groundwater irrigation.
    [Show full text]
  • Surface Irrigationirrigation
    SurfaceSurface IrrigationIrrigation ASM/SWES 404/504 TonightTonight -- 44 NovemberNovember • Hand back homework and in-class writing assignment; go over homework • Review for exam • Topic: Surface Irrigation (60 minutes for lecture) – in-class writing assignment (20 minutes) – show video (20 minutes) – handout classnotes InIn--ClassClass WritingWriting AssignmentAssignment Why do level basins require high flow rates? SuitableSuitable ConditionsConditions forfor SurfaceSurface IrrigationIrrigation • Level topography • Uniform deep soils of medium texture – Why deep? – Why uniform? – Why medium texture? • Large streams • Experienced labor – How important is experience? • Supply of water WaterWater DistributionDistribution • Canals/Open-ditches – Lined vs. unlined – Weeds • Underground pipe – concrete –PVC – pressurized • Portable pipe –Gated pipe WaterWater controlcontrol structuresstructures • Devices to control water flow in irrigation ditches – – – – • Devices for water distribution from irrigation ditches to fields – spiles, gate turnouts, and siphon tubes Example:Example: SiphonSiphon tubetube calculationscalculations • What is the flow through a 2-in siphon with 3-in head? • What is the flow through a 1-in siphon tube with 6-in head? • Why aren’t the flows equal? SurfaceSurface IrrigationIrrigation MethodsMethods • Flooding • Borders • Basins • Furrows FloodingFlooding • Definition/Description • Advantages – – • Disadvantages – – GradedGraded bordersborders • Covers entire surface • Used for close-growing crops • Slopes: 0.5% - 4%
    [Show full text]