Degree of Bacterial Contamination of Mobile Phone and Computer
Total Page:16
File Type:pdf, Size:1020Kb
International Journal of Environmental Research and Public Health Article Degree of Bacterial Contamination of Mobile Phone and Computer Keyboard Surfaces and Efficacy of Disinfection with Chlorhexidine Digluconate and Triclosan to Its Reduction Jana Koscova 1,*, Zuzana Hurnikova 2 and Juraj Pistl 1 1 Department of Microbiology and Immunology, Institute of Microbiology and Gnotobiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; [email protected] 2 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; [email protected] * Correspondence: [email protected] Received: 15 August 2018; Accepted: 26 September 2018; Published: 12 October 2018 Abstract: The main aim of our study was to verify the effectiveness of simple disinfection using wet wipes for reduction of microbial contamination of mobile phones and computer keyboards. Bacteriological swabs were taken before and after disinfection with disinfectant wipes with active ingredients chlorhexidine digluconate and triclosan. The incidence and type of microorganisms isolated before and after disinfection was evaluated; the difference was expressed as percentage of contamination reduction. Our results confirmed the high degree of surface contamination with bacteria, some of which are opportunistic pathogens for humans. Before the process of disinfection, on both surfaces, mobile phones, and computer keyboards, the common skin commensal bacteria like coagulase-negative staphylococci were diagnosed most frequently. On the keyboards, species of the genus Bacillus and representatives of the family Enterobacteriaceae were abundant. The potentially pathogenic species were represented by Staphylococcus aureus. Cultivation of swabs performed 5 min after disinfection and subsequent calculation of the reduction of contamination have shown that simple wiping with antibacterial wet wipe led to a significant reduction of microbial contamination of surfaces, with effect ranging from 36.8 to 100%. Keywords: mobile phone; computer keyboard; bacteria; disinfection; reduction of contamination 1. Introduction Microbial standards in hygiene are necessary for a healthy life. People often believe that microbes are only present in research labs or in hospitals and clinics and thus they have a misleading feeling of security in other places. Lack of knowledge about where germs occur could be the cause of health problems. In fact, 80% of infections are spread through hand contact with hands or other objects [1]. Bacteria are found almost everywhere in air, water, soil, food, and in plants and animals organisms, including humans. It is generally acknowledged that inanimate objects can also carry microorganisms originating from the surrounding environment. Predominantly Gram-positive cocci (Staphylococcus spp., Micrococcus spp.), but also spore-forming rods (Bacillus spp.) or Gram-negative bacteria, can be transmitted through devices like mobile phones or computer keyboards [2]. These attached microorganisms have a potential to be transferred to food or human body, where the growth of bacteria may continue. Furthermore, formation of biofilm by one bacterial agent can affect the survival of other pathogens on the same surface [3]. Once deposited on surfaces, many infectious agents can survive for extended periods unless they are eliminated by disinfection or sterilisation Int. J. Environ. Res. Public Health 2018, 15, 2238; doi:10.3390/ijerph15102238 www.mdpi.com/journal/ijerph Int. J. Environ. Res. Public Health 2018, 15, 2238 2 of 9 procedures [4]. Depending on environmental conditions, pathogens may remain infectious on surfaces for weeks after being contaminated [5]. Mobile phone usage has a personal character, being attached to the close proximity of parts of the body such as the face, ears, nose, lips, and hands, which are the most common infection gateways. Transferred microorganisms can, especially in people with suppressed immune system, cause opportunistic infections and mild to chronic disease. Computer keyboards are among the most commonly used user interfaces. The majority of keyboards have over 101 individual keys, which makes it difficult and time consuming to clean. This is often the reason why most owners do not clean and disinfect the keyboard. Today, mobile phones have become one of the most indispensable accessories for professional and social life. In addition to the standard voice function of a telephone, mobile phones can support many additional services such as SMS (Short Message Service) for text messaging, email, pocket switching for access to the Internet, and MMS (Multimedia Messaging Service) for sending and receiving photos and video [3]. Although mobile phones are usually stored in bags or pockets, they are handled frequently and held close to the face [6]. Mobile phones can spread infectious diseases by their frequent contact with hands [7] and they have also been reported to be a reservoir for microorganisms [8]. Mobile phones are also in close relationship to nosocomial infections, they may act as a mobile reservoir for microbial pathogens [9]. The use of cell phones often occurs in hospitals, by patients, visitors, and health care workers, and this is one environment where hospital-associated (nosocomial) infections are most prevalent [10]. One study came to a result that pathogenic bacteria are present on approximately 40% of mobile phones belonging to patients in a hospital and on approximately 20% of mobile phones belonging to hospital staff [3]. As well as mobile phones, computer keyboards have been also implicated as a potential reservoir for infectious agents [11]. Given that computers are not routinely disinfected, the opportunity for the transmission of contaminating microorganisms is potentially great. The computer’s keyboard and also mouse have a very dynamic environment. In general, the bacteria that live on our skin, fingernails, hands, and anywhere the hands have been are likely to transfer new bacteria over to the keyboard. Especially, in a place where there is a lot of people moving in and out, such as a hospital, school or office, there is likely to be a good number of people that are sick, and through them come the new bacteria that will eventually settle on the keyboard through the air or from physical contact. Inadequately performed hand hygiene and not disinfected surfaces are two reasons why the computer keys could be the sources of microbial contamination, consequently resulting in indirect transmission of potential pathogens [12]. Eating above computer keyboards is also one of the causes of bacterial contamination. Spills can wind up on and between the keys, and the food deposits encourage the growth of millions of bacteria. Dust can trap moisture and enable any bacteria that are already on the keyboard to flourish [13]. Studies dealing with cell phone or keyboard contamination are mainly focused on HAI (hospital-acquired infections) and transmission of nosocomial pathogens [14,15]. The present study was undertaken to evaluate the bacteriological contamination of mobile phones and computer keyboards and their susceptibility patterns to commonly used disinfectant wipes with active ingredients chlorhexidine digluconate and triclosan. This work was not conducted in a hospital, rather the samples were taken from devices of people working in microbiology lab and teachers. The aim of this study was to show that mobile devices present potential risk of infection not only in hospitals. Mobile devices and electronic keyboards can carry pathogens that can be harmful to human beings. While many believe pathogen transmission is only harmful in healthcare settings, many people lack knowledge that the transmission of these harmful bacteria can occur in everyday life activities and underrate the disinfection of these devices. Using disinfectant wipes once daily for mobile phones and keyboards can decrease the probability of contamination and spreading of bacterial pathogens through these devices. Int. J. Environ. Res. Public Health 2018, 15, 2238 3 of 9 2. Materials and Methods 2.1. Sample Collecting Swabs from the investigated surfaces of 25 mobile phones and 25 computer keyboards were collected using disposable sterile cotton swabs moistened with sterile saline. For sampling, the devices of employees of University of Veterinary Medicine and Pharmacy in Košice (Department of Microbiology and Immunology) were taken on a voluntary basis. These people are working at University, the swabs were taken from teachers as well as from laboratory workers who are working in microbiology laboratories. Samples were collected by thorough rotating a cotton swab on the surface and the back of the mobile phone, including keypad, touch screen, and the both sides of the phone. Subsequently, the entire telephone was disinfected using disposable, commercially available disinfectant wipes with active ingredients chlorhexidine digluconate and triclosan, and after 5 min the control smear was repeated in the same manner with new sterile swab. Swabs from the keyboard were carried out the same way, with thoroughly wiping out the space between the keys and individual keys. Control swab was performed also 5 min post disinfection. Prior the collection of swabs, the respondents–users of mobile phones and computer keyboards completed a questionnaire with basic data on the use and cleaning of the device. Hands are a critical component of the human microbiome. Proposed model for the hand as a critical vector